首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   756篇
  免费   105篇
  国内免费   269篇
安全科学   108篇
废物处理   6篇
环保管理   157篇
综合类   463篇
基础理论   250篇
污染及防治   61篇
评价与监测   31篇
社会与环境   33篇
灾害及防治   21篇
  2024年   3篇
  2023年   30篇
  2022年   42篇
  2021年   41篇
  2020年   38篇
  2019年   43篇
  2018年   29篇
  2017年   34篇
  2016年   43篇
  2015年   58篇
  2014年   51篇
  2013年   59篇
  2012年   64篇
  2011年   93篇
  2010年   60篇
  2009年   63篇
  2008年   43篇
  2007年   42篇
  2006年   45篇
  2005年   41篇
  2004年   25篇
  2003年   16篇
  2002年   18篇
  2001年   16篇
  2000年   13篇
  1999年   13篇
  1998年   15篇
  1997年   14篇
  1996年   12篇
  1995年   12篇
  1994年   8篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
排序方式: 共有1130条查询结果,搜索用时 15 毫秒
31.
Taste and odor (T/O) in drinking water often cause consumer complaints and are thus regulated in many countries. However, people in different regions may exhibit different sensitivities toward WO. This study proposed a method to determine the regional drinking water odorant regulation goals (ORGs) based on the odor sensitivity distribution of the local population. The distribution of odor sensitivity to 2-methylisobomeol (2-MIB) by the local population in Beijing, China was revealed by using a normal distribution function/model to describe the odor complaint response to a 2-MIB episode in 2005, and a 2-MIB concentration of 12.9 ng/L and FPA (flavor profile analysis) intensity of 2.5 was found to be the critical point to cause odor complaints. Thus the Beijing ORG for 2-MIB was determined to be 12.9 ng/L. Based on the assumption that the local FPA panel can represent the local population in terms of sensitivity to odor, and that the critical FPA intensity causing odor complaints was 2.5, this study tried to determine the ORGs for seven other cities of China by performing FPA tests using an FPA panel from the corresponding city. ORG values between 12.9 and 31.6 ng/L were determined, showing that a unified ORG may not be suitable for drinking water odor regulations. This study presents a novel approach for setting drinking water odor regulations.  相似文献   
32.
千岛湖溶解氧的动态分布特征及其影响因素分析   总被引:4,自引:3,他引:1  
基于2011~2012年1~12月千岛湖6个站点的溶解氧浓度实时监测数据,分析了千岛湖溶解氧的垂直分布以及时空分布特征,并探讨了影响水体溶解氧动态分布特征的影响因子.结果表明,溶解氧分布特征有明显的垂向差异以及季节差异.冬季,平均溶解氧值较高,除大坝前站点,其余各站点溶解氧无显著垂向差异;夏季,溶解氧垂向差异显著大于春秋两季.水深较深的小金山、三潭岛和大坝前站点其夏季溶解氧最大值出现在真光层,分别达到11.59、12.52和10.96 mg·L-1.千岛湖表层溶解氧最大值出现在春季,而最小值出现在秋季.相关性分析结果表明,溶解氧与水温、pH、叶绿素a浓度的相关性存在季节性差异.夏季,水温与溶解氧存在极其显著的线性相关,温度热力分层是影响溶解氧在夏季垂直分布的关键因素.春夏季,pH、叶绿素a浓度与溶解氧的相关系数较高,主要与浮游植物光合作用有关.  相似文献   
33.
王岚  张桂玲  孙明爽  任景玲 《环境科学》2014,35(12):4502-4510
分别于2012年3月和7月对长江口及其邻近海域进行了调查,对水体中溶解氧化亚氮(N2O)的分布及海-气交换通量进行了研究.结果表明,春季长江口及其邻近海域表层海水中溶解N2O浓度范围为9.34~49.08 nmol·L-1,平均值为(13.27±6.40)nmol·L-1.夏季表层溶解N2O浓度范围为7.27~27.81 nmol·L-1、平均值为(10.62±5.03)nmol·L-1.两航次表、底层海水中溶解N2O浓度相差不大.长江口溶解N2O浓度由近岸向外海逐渐降低,受陆源输入影响显著.溶解N2O浓度高值出现在长江口最大浑浊带附近,这主要是由于水体中较高的硝化速率造成的.温度是影响N2O分布的另一个重要因素,对溶解N2O浓度有双重作用.春季和夏季表层海水中N2O饱和度范围分别为86.9%~351.3%和111.7%~396.0%,平均值分别为(111.5±41.4)%和(155.9±68.4)%,大部分站位处于过饱和状态.利用LM86、W92和RC01公式分别计算了长江口及其邻近海域N2O的海-气交换通量,春季分别为(3.2±10.9)、(5.5±19.3)和(12.2±52.3)μmol·(m2·d)-1,夏季分别为(7.3±12.4)、(12.7±20.4)和(20.4±35.9)μmol·(m2·d)-1,初步估算出长江口及其邻近海域的年平均释放量分别为0.6×10-2Tg·a-1(LM86)、1.1×10-2Tg·a-1(W92)、2.0×10-2Tg·a-1(RC01).长江口及其邻近海域虽然只占全球海洋总面积的0.02%,但其释放的N2O占全球海洋释放量的0.06%,表明长江口及其邻近海域是产生和释放N2O的活跃区域.  相似文献   
34.
Freshwater cyanobacterial blooms have drawn public attention because they threaten the safety of water resources and human health worldwide. Heavy cyanobacterial blooms outbreak in Lake Taihu in summer annually and vanish in other months. To find out the factors impacting the cyanobacterial blooms, the present study measured the physicochemical parameters of water and investigated the composition of microbial community using the 16S rRNA gene and internal transcribed spacer amplicon sequencing in the months with or without bloom. The most interesting finding is that two major cyanobacteria, Planktothrix and Microcystis, dramatically alternated during a cyanobacterial bloom in 2016, which is less mentioned in previous studies. When the temperature of the water began increasing in July, Planktothrix appeared first and showed as a superior competitor for M. aeruginosa in NO3?-rich conditions. Microcystis became the dominant genus when the water temperature increased further in August. Laboratory experiments confirmed the influence of temperature and the total dissolved nitrogen (TDN) form on the growth of Planktothrix and Microcystis in a co-culture system. Besides, species interactions between cyanobacteria and non-cyanobacterial microorganisms, especially the prokaryotes, also played a key role in the alteration of Planktothrix and Microcystis. The present study exhibited the alteration of two dominant cyanobacteria in the different bloom periods caused by the temperature, TDN forms as well as the species interactions. These results helped the better understanding of cyanobacterial blooms and the factors which contribute to them.  相似文献   
35.
基于遗传算法的生命线工程网络抗震优化设计   总被引:2,自引:2,他引:0  
进行网络抗震可靠性分析的目的,不仅在于定量评价生命线工程网络系统的抗震性能,更重要的是利用这种分析工具指导网络抗震性能的优化设计。以无向边权网络系统为分析对象,分别以管网造价和系统抗震可靠度作为优化目标和约束条件,建立网络系统拓扑优化模型,利用递推分解算法作为网络系统抗震可靠性分析工具,并引入系统单元的灵敏度分析,采用遗传算法求解网络系统的拓扑优化问题,从而发展了一类工程网络抗震优化设计方法。实例分析结果表明,网络系统拓扑结构与系统可靠度之间有显著的正相关关系。  相似文献   
36.
为揭示冲击煤样渗透率的变化规律,通过立式分离式霍普金森(SHPB)冲击装置对不同层理方向煤样进行动态冲击,进而采用渗透仪对冲击后的煤样进行渗透率测试,分析不同冲击荷载下煤岩的渗透率及应力敏感性。结果表明:冲击煤样的渗透率远大于原煤样品,冲击载荷越大,渗透率越大;在相同的冲击载荷和气体压力下,平行于层理方向的煤样渗透率最大,其次是斜交45°层理方向的煤样渗透率,垂直于层理方向的煤样渗透率最小;渗透率受有效应力影响显著;在冲击荷载的作用下,垂直于层理方向煤样渗透率的变化率对孔隙压力更为敏感。  相似文献   
37.
The effect of pyrolysis and oxidation characteristics on the explosion sensitivity and severity parameters, including the minimum ignition energy MIE, minimum ignition temperature MIT, minimum explosion concentration MEC, maximum explosion pressure Pmax, maximum rate of pressure rise (dP/dt)max and deflagration index Kst, of lauric acid and stearic acid dust clouds was experimentally investigated. A synchronous thermal analyser was used to test the particle thermal characteristics. The functional test apparatuses including the 1.2 L Hartmann-tube apparatus, modified Godbert-Greenwald furnace, and 20 L explosion apparatus were used to test the explosion parameters. The results indicated that the rapid and slow weight loss processes of lauric acid dust followed a one-dimensional diffusion model (D1 model) and a 1.5 order chemical reaction model (F1.5 model), respectively. In addition, the rapid and slow weight loss processes of stearic acid followed a 1.5 order chemical reaction model (F1.5 model) and a three-dimensional diffusion model (D3 model), respectively, and the corresponding average apparent activation energy E and pre-exponential factor A were larger than those of lauric acid. The stearic acid dust explosion had higher values of MIE and MIT, which were mainly dependent on the higher pyrolysis and oxidation temperatures and the larger apparent activation energy E determining the slower rate of chemical bond breakage during pyrolysis and oxidation. In contrast, the lauric acid dust explosion had a higher MEC related to a smaller pre-exponential factor A with a lower amount of released reaction heat and a lower heat release rate during pyrolysis and oxidation. Additionally, due to the competition regime of the higher oxidation reaction heat release and greater consumption of oxygen during explosion, the explosion pressure Pm of the stearic acid dust was larger in low concentration ranges and decayed to an even smaller pressure than with lauric acid when the concentration exceeded 500 g/m3. The rate of explosion pressure rise (dP/dt)m of the stearic acid dust was always larger in the experimental concentration range. The stearic acid dust explosion possessed a higher Pmax, (dP/dt)max and Kst mainly because of a larger pre-exponential factor A related to more active sites participating in the pyrolysis and oxidation reaction. Consequently, the active chemical reaction occurred more violently, and the temperature and overpressure rose faster, indicating a higher explosion hazard class for stearic acid dust.  相似文献   
38.
This paper mainly studied the influence of particle size distribution on the explosion risk of aluminum powder under the span of large particle size distribution. The measurement was carried out with the 20 L explosion ball and the Hartmann tube. The statistical analysis was used to analyze the relevance between the parameters of explosion risk and the particle size parameters. Test results showed that with the increase of particle size, the sensitivity parameter increases and the intensity parameter deceleration decreases. The effect of particle size change on MEC and MIE of small particle size aluminum powder is relatively small but greater impact on Pm and (dP/dt)m. The small particle size components greatly increasing the sensitivity of the explosion and accelerating the rate of the explosion reaction; while the large particle size component contributes to the maximum explosion pressure. D3,2 particle size dust determines the risk of aluminum powder explosion.  相似文献   
39.
为探究地表水体与沉积物中酚类化合物的污染分布特征和生态风险,选择天津市3个水源地与6条主要河流,采集了26个地表水样与6个沉积物样品,利用固相萃取与超声萃取、高效液相色谱-串联质谱法(HPLC-MS/MS)测定了水样及沉积物中1-萘酚(1-naphthol)、壬基酚(nonylphenol, NP)、双酚A(bisphenol A, BPA)、2-苯基苯酚(biphenyl-2-ol)、3,4-二氯酚(3,4-dichlorophenol)、四溴双酚A(tetrabromobisphenol A, TBBPA)和对叔丁基苯酚(p-tert-butylphenol, PTBP)等7种高关注酚类化合物的浓度水平,并应用物种敏感性分布(species sensitivity distribution, SSD)法和熵值法(ecological risk quotient, RQ)评估7种酚类化合物水环境和沉积物的生态风险。结果表明,地表水样中7种酚类化合物均全部检出;其中壬基酚的检出浓度最高,其次为四溴双酚A、对叔丁基苯酚、1-萘酚、2-苯基苯酚、3,4-二氯酚和双酚A。沉积物中酚类化合物的污染分布规律与水样相似,除双酚A外的目标物全部检出。其中,壬基酚浓度比其他物质浓度高2个数量级。风险评估结果显示,壬基酚对水环境与沉积物存在不可接受的风险;而四溴双酚A、对叔丁基苯酚、1-萘酚、2-苯基苯酚、3,4-二氯酚和双酚A则对环境具有较低风险或者存在一定的风险。  相似文献   
40.
环境生态风险评估(ERA)流程已经被纳入全球环境政策中,既用于规范新化学物质的授权和营销(前瞻性环境生态风险评估),也用于评估潜在的污染场地(回顾性环境生态风险评估)。将土壤生态毒理学应用于风险评估,能阐明有毒物质对土壤生态系统中生命有机体的危害程度与范围。笔者主要介绍了应用评估因子法和物种敏感度分布法对基于效应数据进行的外推与估算,并综述了欧美等主要国家和地区的土壤生态风险评估框架、相关法律法规及其实施情况等,为中国开展土壤污染物生态毒理效应和风险评估等相关研究提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号