全文获取类型
收费全文 | 1005篇 |
免费 | 730篇 |
国内免费 | 87篇 |
专业分类
安全科学 | 103篇 |
废物处理 | 86篇 |
环保管理 | 59篇 |
综合类 | 935篇 |
基础理论 | 253篇 |
污染及防治 | 357篇 |
评价与监测 | 20篇 |
社会与环境 | 5篇 |
灾害及防治 | 4篇 |
出版年
2025年 | 11篇 |
2024年 | 44篇 |
2023年 | 47篇 |
2022年 | 90篇 |
2021年 | 79篇 |
2020年 | 69篇 |
2019年 | 66篇 |
2018年 | 77篇 |
2017年 | 89篇 |
2016年 | 87篇 |
2015年 | 93篇 |
2014年 | 114篇 |
2013年 | 111篇 |
2012年 | 114篇 |
2011年 | 91篇 |
2010年 | 79篇 |
2009年 | 89篇 |
2008年 | 55篇 |
2007年 | 84篇 |
2006年 | 77篇 |
2005年 | 42篇 |
2004年 | 33篇 |
2003年 | 39篇 |
2002年 | 32篇 |
2001年 | 20篇 |
2000年 | 13篇 |
1999年 | 17篇 |
1998年 | 11篇 |
1997年 | 12篇 |
1996年 | 12篇 |
1995年 | 5篇 |
1994年 | 8篇 |
1993年 | 3篇 |
1991年 | 1篇 |
1989年 | 3篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
排序方式: 共有1822条查询结果,搜索用时 15 毫秒
61.
Panax notoginseng (Burk.) F.H. Chen, a rare traditional Chinese medicinal herb, is a widely used phytomedicine used all over the world. In recent years, the arsenic contamination of the herb and its relative products becomes a serious problem due to elevated soil As concentration. This study aimed to evaluate the effects of different types and dosages of amendments on As stabilization in soil and its uptake by P. notoginseng. Results showed that comparing to control treatment, the As concentrations of P. notoginseng declined by 49–63%, 43–61% and 52–66% in 0.25% zero-valent iron (Fe(0)), 0.5% bauxite residue, and 1% zeolite treatment, respectively; whereas the biomasses were elevated by 62–116%, 45–152% and 114–265%, respectively. The As(III) proportions of P. notoginseng increased by 8%, 9%, and 8%, and the transfer factors of As from root to shoot increased by 37%, 42% and 84% in the optimal treatments of Fe(0), bauxite residue, and zeolite. For soil As, all the three amendments could transform the non-specifically adsorbed As fraction to hydrous oxides Fe/Al fractions (by Fe(0) and red mud) or specifically adsorbed As fraction (by zeolite), therefore reduced the bioavailability of soil As. With a comprehensive consideration of stabilization efficiency, plant growth, environmental influence, and cost, Fe(0) appeared to be the best amendment, and zeolite could also be a good choice. In conclusion, this study was of significance in developing As contamination control in P. notoginseng planting areas, and even other areas for medicinal herb growing. 相似文献
62.
Zerovalent iron (ZVI) abiotically degrades several chlorinated aliphatic hydrocarbons (CAHs) via reductive dechlorination, which offers perspectives for in situ groundwater remediation applications. The difference in reactivity between ZVI particles is often linked with their specific surface area. However, other parameters may influence the reactivity as well. Earlier, we reported for a set of microscale zerovalent iron (mZVI) particles the disappearance kinetic of different CAHs which were collected under consistent experimental conditions. In the present study, these kinetic data were correlated with the carbon, oxygen and sulfur content of mZVI particles. It was confirmed that not only the specific surface area affects the disappearance kinetic of CAHs, but also the chemical composition of the mZVI particles. The chemical composition, in addition, influences CAHs removal mechanism inducing sorption onto mZVI particles instead of dechlorination. Generally, high disappearance kinetic of CAHs was observed for particles containing less oxygen. A high carbon content, on the other hand, induced nonreactive sorption of the contaminants on the mZVI particles. To obtain efficient remediation of CAHs by mZVI particles, this study suggested that the carbon and oxygen content should not exceed 0.5% and 1% respectively. Finally, the efficiency of the mZVI particles may be improved to some extent by enriching them with sulfur. However, the impact of sulfur content on the reactivity of mZVI particles is less pronounced than that of the carbon and oxygen content. 相似文献
63.
Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching 总被引:3,自引:0,他引:3
Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation-reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect. 相似文献
64.
Fe3+对赤潮异弯藻生长和光合作用的影响 总被引:3,自引:0,他引:3
用人工海水APSW以f/2营养加富,在总铁浓度为0—1000nmol L^-1的范围内,考察了总铁浓度对赤潮异弯藻(Heterosigma akashiwo)生长和光合作用的影响.结果发现,当铁浓度小于10nmol L^-1时,最大藻细胞密度与比生长速率均受到明显限制.补铁后受铁限制的细胞得到缓解,表明铁是藻细胞生长的重要限制因子.当铁浓度大于100nmol L^-1时,最大细胞密度与比生长速率不再受铁限制,但其光合作用活性有所改变.在铁限制下细胞的光饱和光合作用速率Pm,暗呼吸速率Rd,表观光合作用效率a与铁丰富细胞相比都有所减小,而光补偿点Ic及饱和光强Ik增大.图5表1参11 相似文献
65.
Degradation of pentachlorobiphenyl by a sequential treatment using Pd coated iron and an aerobic bacterium (H1) 总被引:1,自引:0,他引:1
The reductive dechlorination and biodegradation of 2,2′4,5,5′-pentachlorobiphenyl (PCB#101) was investigated in a laboratory-scale. Palladium coated iron (Pd/Fe) was used as a catalytic reductant for the chemical degradation of 2,2′4,5,5′-pentachlorobiphenyl, and an aerobic bacteria was used for biodegradation following the chemical reaction in this study. Dechlorination was affected by several factors such as Pd loading, initial soil pH and the amount of Pd/Fe used. The results showed that higher Pd loading, higher dosage of Pd/Fe and slightly acid condition were beneficial to the catalytic dechlorination of 2,2′,4,5,5′-pentachlorobiphenyl. In laboratory batch experiments, 2,2′4,5,5′-pentachlorobiphenyl was reduced in the presence of Pd/Fe bimetal, which was not further degraded by aerobic bacteria. 2,2′,4-trichlorobiphenyl (PCB#17), a reduction product from 2,2′4,5,5′-pentachlorobiphenyl, was readily biodegraded in the presence of a aerobic bacterial strain. It is suggested that an integrated Pd/Fe catalytic reduction-aerobic biodegradation process may be a feasible option for treating PCB-contaminated soil. 相似文献
66.
玉米-花生混作系统中的氮铁营养效应 总被引:2,自引:0,他引:2
采用盆栽试验的方法研究了不同施氮水平和种间相互作用对花生铁营养、根瘤固氮能力以及系统氮营养的影响。结果表明,在本试验种植密度下,施氮水平和种植方式对下针期单株花生生物量无显著影响。在不同施氮水平下,玉米-花生混作不仅均显著改善了花生铁营养,而且玉米对氮素的大量吸收显著降低了混作花生根际土壤硝态氮的质量分数,从而使得花生根瘤数增加,根瘤固氮酶活性增强。混作花生铁营养受混作玉米氮营养及作物发育状况的影响较大,并且下针期花生固氮酶活性受施氮抑制及花生铁营养改善的促进。这说明,根际土壤硝态氮的质量分数的降低和花生铁营养的改善是石灰性土壤上花生固氮能力增强的关键因素,而花生生物固氮作用的增强是该混作系统体现氮营养优势的主要原因。 相似文献
67.
Xiaojian Zhang Zilong Mi Yang Wang Shuming Liu Zhangbin Niu Pinpin Lu Jun Wang Junnong Gu Chao Chen 《Frontiers of Environmental Science & Engineering》2014,8(3):417-426
A red water phenomenon occurred in several communities few days after the change of water source in Beijing, China in 2008. In this study, the origin of this problem, the mechanism of iron release and various control measures were investigated. The results indicated that a significant increase in sulphate concentration as a result of the new water source was the cause of the red water phenomenon. The mechanism of iron release was found that the high-concentration sulphate in the new water source disrupted the stable shell of scale on the inner pipe and led to the release of iron compounds. Experiments showed that the iron release rate in the new source water within pipe section was over 11-fold higher than that occurring within the local source water. The recovery of tap water quality lasted several months despite ameliora- tive measures being implemented, including adding phosphate, reducing the overall proportion of the new water source, elevating the pH and alkalinity, and utilizing free chlorine as a disinfectant instead of chloramine. Adding phosphate was more effective and more practical than the other measures. The iron release rate was decreased after the addition of 1.5 mg. L-1 orthophosphate- P, tripolyphosphate-P and hexametaphosphate-P by 68%, 83% and 87%, respectively. Elevating the pH and alkalinity also reduced the iron release rate by 50%. However, the iron release rate did not decreased after replacing chloramine by 0.5-0.8 mg. L-1 of free chlorine as disinfectant. 相似文献
68.
Polybrominated diphenyl ethers (PBDEs) are recognized as a new class of widely-distributed and persistent contaminants for which effective treatment and remediation technologies are needed. In this study, two kinds of commercially available nanoscale Fe0 slurries (Nanofer N25 and N25S), a freeze-dried laboratory-synthesized Fe0 nanoparticle (nZVI), and their palladized forms were used to investigate the effect of particle properties and catalyst on PBDE debromination kinetics and pathways. Nanofers and their palladized forms were found to debrominate PBDEs effectively. The laboratory-synthesized Fe0 nanoparticles also debrominated PBDEs, but were slower due to deactivation by the freeze-drying and stabilization processes in the laboratory synthesis. An organic modifier, polyacrylic acid (PAA), bound on N25S slowed PBDE debromination by a factor of three to four compared to N25. The activity of palladized nZVI (nZVI/Pd) was optimized at 0.3 Pd/Fe wt% in our system. N25 could debrominate selected environmentally-abundant PBDEs, including BDE 209, 183, 153, 99, and 47, to end products di-BDEs, mono-BDEs and diphenyl ether (DE) in one week, while nZVI/Pd (0.3 Pd/Fe wt%) mainly resulted in DE as a final product. Step-wise major PBDE debromination pathways by unamended and palladized Fe0 are described and compared. Surface precursor complex formation is an important limiting factor for palladized Fe0 reduction as demonstrated by PBDE pathways where steric hindrance and rapid sequential debromination of adjacent bromines play an important role. 相似文献
69.
Geophysical methods have been proposed as technologies for non-invasively monitoring geochemical alteration in permeable reactive barriers (PRBs). We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in Fe0 columns using (a) Na2SO4, and (b) NaHCO3 plus CaCl2 mixture, solutions. At the influent interface where the reactions were most severe, a contrasting time-lapse electrical response was observed between the two columns. Solid phase analysis confirmed the formation of corrosion halos and increased mineralogical complexity in the corroded sections of the columns compared to the minimal/non-corroded sections. We attribute the contrasting time-lapse signatures to the differences in the electrical properties of the mineral phases formed within the two columns. While newly precipitated/transformed polarizable and semi-conductive iron oxides (mostly magnetite and green rust) increase the polarization and conductivity of the sulfate column, the decrease of both parameters in the bicarbonate column is attributed to the precipitation of non-polarizable and non-conductive calcite. Our results show that precipitate mineralogy is an important factor influencing the electrical properties of the corroded iron cores and must be considered if electrical geophysical methods are to be developed to monitor PRB barrier corrosion processes in situ. 相似文献
70.
Ambient air samples at ten sites in an iron and steel industrial complex were collected from June to December for analyzing polycyclic aromatic hydrocarbons (PAHs). Sixteen species of PAH components in air samples were identified. The results indicate that both gaseous phase and particle‐bound PAHs at the top of the cokemaking plants are unusually high. The profiles of particle‐bound PAHs indicate that the predominant species at the top of, the coke oven batteries are those of high molecular weight components. The major components of particle‐bound PAHs at sampling sites near the fenceline, however, include the medium molecular weight components. The PAH profiles of air samples within the industrial complex show a strong similarity to those of cokemaking plant samples. The concentrations and the specific content of benzo(a)pyrene in the iron and steel industrial complex are higher than those values measured in urban area, petrochemical industry park, and open‐air burning area. 相似文献