首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   6篇
  国内免费   21篇
安全科学   30篇
废物处理   8篇
环保管理   65篇
综合类   81篇
基础理论   66篇
环境理论   1篇
污染及防治   26篇
评价与监测   16篇
社会与环境   14篇
灾害及防治   16篇
  2023年   4篇
  2022年   3篇
  2021年   4篇
  2020年   9篇
  2019年   10篇
  2018年   2篇
  2017年   8篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   14篇
  2012年   7篇
  2011年   24篇
  2010年   14篇
  2009年   19篇
  2008年   14篇
  2007年   19篇
  2006年   17篇
  2005年   11篇
  2004年   15篇
  2003年   9篇
  2002年   7篇
  2001年   9篇
  2000年   4篇
  1999年   8篇
  1998年   5篇
  1997年   5篇
  1996年   9篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
排序方式: 共有323条查询结果,搜索用时 46 毫秒
91.
ABSTRACT: Samples were collected upstream and downstream of Schwatka Lake, Yukon Territory, to examine nutrient transport through a small northern impoundment. Annual loads were estimated for total phosphorus, nitrate plus nitrite, total dissolved nitrogen, silicate, total inorganic carbon, and total organic carbon. Transport of these materials out of the impoundment was greater than estimated for the upstream location. Results of a short term temporal study confirmed that the output exceeded the input to the lake. There are several processes which might be responsible for this occurrence, of these, ground water contributions appear to be the active process.  相似文献   
92.
Modifications in the computed climatic water budget have made it possible to achieve good agreement between computed and measured stream flow on both a monthly and annual basis in basins without appreciable winter snow cover. Comparisons of computed and measured stream flow in 28 basins on the Delmarva peninsula show that for some basins the agreement is excellent (regression line essentially equals unity), for other basins the regression line has a slope of one but it is displaced above or below the y=x line, while for other basins, the slope of the regression line differs appreciably from unity. Study of the basins where agreement between computed and measured values is only fair to poor reveals that the patterns of disagreement can be used to provide information on the water holding capacity in the root zone of the soil, on the quantity of deep aquifer recharge within the basin, or on the effect of human modifications within the basin. The technique should also reveal the quantity of interbasin transfers or other consumptive uses within the basin. The water budget, thus, becomes a useful tool to study hydrologic characteristics or their changes over time within a basin.  相似文献   
93.
The US Army Engineering Research Development Center (ERDC) uses a modified form of the Revised Universal Soil Loss Equation (RUSLE) to estimate spatially explicit rates of soil erosion by water across military training facilities. One modification involves the RUSLE support practice factor (P factor), which is used to account for the effect of disturbance by human activities on erosion rates. Since disturbance from off-road military vehicular traffic moving through complex landscapes varies spatially, a spatially explicit nonlinear regression model (disturbance model) is used to predict the distribution of P factor values across a training facility. This research analyzes the uncertainty in this model's disturbance predictions for the Fort Hood training facility in order to determine both the spatial distribution of prediction uncertainty and the contribution of different error sources to that uncertainty. This analysis shows that a three-category vegetation map used by the disturbance model was the greatest source of prediction uncertainty, especially for the map categories shrub and tree. In areas mapped as grass, modeling error (uncertainty associated with the model parameter estimates) was the largest uncertainty source. These results indicate that the use of a high-quality vegetation map that is periodically updated to reflect current vegetation distributions, would produce the greatest reductions in disturbance prediction uncertainty.  相似文献   
94.
ABSTRACT: Temperature and dissolved oxygen concentrations were measured monthly from January 1971 to December 1982 at 1-m depth intervals at 13 stations in Keowee Reservoir in order to characterize spatial and temporal changes associated with operation of the Oconee Nuclear Station. The reservoir water column was i to 4°C warmer in operational than in non-operational years. The thermo-dine was at depths of 5 to 15 m before the operation of Oconee Nuclear Station, but was always below the upper level of the intake (20 m) after the station was in full operation; this suggests that pumping by the Oconee Nuclear Station had depleted all available cool hypolimnetic water to this depth. As a result summer water temperatures at depths greater than 10 m were usually 10°C higher after plant operation began than before. By fall the reservoir was nearly homothemious to a depth of 27 m, where a thermocine developed. Seasonal temperature profiles varied with distance from the plant; a cool water plume was evident in spring and a warm water plume was present in the summer, fall, and winter. A cold water plume also developed in the northern section of the reservoir due to the operation of Jocassee Pumped Storage Station. Increases in the mean water temperature of the reservoir during operational periods were correlated with the generating output of the power plant. The annual heat load to the reservoir increased by one-third after plant operations began. The alteration of the thermal stratification of the receiving water during the summer also caused the dissolved oxygen to mix to greater depths.  相似文献   
95.
A new, direct method was developed for quantifying inorganic particulate aerosols trapped by the forest canopy, and for determining the resulting input of elements to a forest ecosystem. The method is based on direct measurements of only six parameters. Using this method, it is possible to determine the load of aerosols trapped by the forest canopy and deposited to leaves, as well as the load of aerosols falling to the forest floor by impaction on plants. It is also possible to estimate the aerosol input of soluble and insoluble elements to an ecosystem. With this new method it has been found that the load of aerosols trapped by the canopy of a mixed forest located in the Rybnik Coal Basin averaged 189.0 kg x ha-1 x growing season-1, or 39.3% of the total inorganic particles reaching the ecosystem. The trapped aerosols provided 13.4 kg x ha-1 of soluble nitrogen and 0.91 kg x ha-1 of insoluble nitrogen over the growing season. At the same time, the input of soluble nitrogen from the atmosphere with rainfall to an open area averaged 13.9 kg x ha-1, and the input of insoluble nitrogen with inorganic dusts averaged 1.4 kg x ha-1.  相似文献   
96.
This paper synthesizes information on the spatial and temporal dynamics of wood in small streams in the Pacific Northwest region of North America. The literature on this topic is somewhat confused due to a lack of an accepted definition of what constitutes “small” streams and what is the relative size of woody debris contained within the channel. This paper presents a matrix that defines woody debris relative to channel size and then discusses the components of a wood budget. Headwater streams are in close proximity to wood sources and, in steeplands, are often tightly constrained by steep hillslopes. Special consideration is given to ecosystem characteristics and to management practices that affect the wood dynamics in this context. Knowledge gaps and uncertainties that can be used to guide future research are identified. Very little is currently known about the role of mass wasting in wood recruitment and storage relative to other processes, such as bank erosion and mortality, in larger streams. Further, very little work has addressed the relative importance of different wood depletion processes, especially those associated with wood transport. The effect of other ecosystem variables on wood dynamics locally across a watershed (from valley bottom to mountaintop) and regionally across the landscape (from maritime to continental climates) is not addressed. Finally, the scientific community has only begun to deal with the effects of management practices on wood quantity, structure, and movement in small streams.  相似文献   
97.
Leaching of soluble salts formed as the result of pyrite oxidation and primary mineral weathering is a major process in mine soil development. A microcosm experiment was designed to study leaching rates from mine soil columns under controlled laboratory conditions. Objectives of this experiment were to investigate the effect of leaching and the effect of fly ash amelioration on mid- to long-term chemical soil properties, and to test whether the results are qualitatively comparable to long-term field studies along a site chronosequence. The leaching experiment was conducted over a period of 850 days representing a kind of time-lapse picture due to high water fluxes. Leaching resulted in more favourable mid- to long-term properties of mine site topsoils, especially a reduced risk for acidity and salt stress. Ash amelioration decreases leaching rates by increasing pH and Al and Fe precipitation. It could be shown that the results of the column leaching studies are qualitatively in good agreement with field observations at least for long-term considerations. By enhancing the leaching process mid- to long-term chemical soil properties can be estimated.  相似文献   
98.
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins.  相似文献   
99.
Lake eutrophication caused by excess phosphorus (P) loading from point sources (PS) and nonpoint sources (NPS) is a persistent and serious ecological problem in China. A phosphorus budget, based on material flow analysis(MFA) and system dynamic (SD), is proposed and applied for the agriculture-dominated Qionghai Lake watershed located in southwestern China. The MFA-SD approach will not only cover the transporting process of P in the lake-watershed ecosystems, but also can deal with the changes of P budget due to the dynamics of watershed. P inflows include the fertilizer for agricultural croplands, soil losses, domestic sewage discharges, and the atmospheric disposition such as precipitation and dust sinking. Outflows are consisted of hydrologic export, water resources development, fishery and aquatic plants harvesting. The internal P recycling processes are also considered in this paper. From 1988 to 2015, the total P inflows for Lake Qionghai are in a rapid increase from 35.65 to 78.73 t/a, which results in the rising of P concentration in the lake. Among the total P load 2015, agricultural loss and domestic sewage account for 70.60% and 17.27% respectively, directly related to the rapid social-economic development and the swift urbanization. Future management programs designed to reduce P inputs must be put into practices in the coming years to ensure the ecosystem health in the watershed.  相似文献   
100.
Assessing groundwater resources in the arid and semiarid borderlands of the United States and Mexico represents a challenge for land and water managers, particularly in the Transboundary Santa Cruz Aquifer (TSCA). Population growth, residential construction, and industrial activities have increased groundwater demand in the TSCA, in addition to wastewater treatment and sanitation demands. These activities, coupled with climate variability, influence the hydrology of the TSCA and emphasize the need for groundwater assessment tools for decision‐making purposes. This study assesses the impacts of changes in groundwater demand, effluent discharge, and climate uncertainties within the TSCA from downstream of the Nogales International Wastewater Treatment Plant to the northern boundary of the Santa Cruz Active Management Area. We use a conceptual water budget model to analyze the long‐term impact of the different components of potential recharge and water losses within the aquifer. Modeling results project a future that ranges from severe long‐term drying to positive wetting. This research improves the understanding of the impact of natural and anthropogenic variables on water sustainability, with an accessible methodology that can be globally applied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号