首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   2篇
  国内免费   58篇
安全科学   4篇
废物处理   9篇
环保管理   21篇
综合类   106篇
基础理论   34篇
污染及防治   157篇
评价与监测   18篇
社会与环境   11篇
灾害及防治   1篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   8篇
  2019年   9篇
  2018年   6篇
  2017年   14篇
  2016年   11篇
  2015年   9篇
  2014年   9篇
  2013年   46篇
  2012年   21篇
  2011年   33篇
  2010年   13篇
  2009年   19篇
  2008年   20篇
  2007年   18篇
  2006年   9篇
  2005年   8篇
  2004年   4篇
  2003年   13篇
  2002年   10篇
  2001年   11篇
  2000年   5篇
  1999年   9篇
  1998年   5篇
  1997年   10篇
  1996年   7篇
  1995年   4篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
181.
Specific second-order rate constants were determined for 5-FU and CAP with ozone. Reaction sites were confirmed by kinetics, Fukui analysis, and products. The olefin moiety was the main ozone reaction site for 5-FU and CAP. Carboxylic acids comprised most of the residual TOC for 5-FU. Ozonation removed the toxicity associated with 5-FU and products but not CAP. Anticancer drugs (ADs) have been detected in the environment and represent a risk to aquatic organisms, necessitating AD removal in drinking water and wastewater treatment. In this study, ozonation of the most commonly used antimetabolite ADs, namely 5-fluorouracil (5-FU) and its prodrug capecitabine (CAP), was investigated to determine reaction kinetics, oxidation mechanisms, and residual toxicity. The specific second-order rate constants between aqueous ozone and 5-FU, 5-FU, 5-FU2, CAP, and CAP were determined to be 7.07(±0.11)×104 M1·s1, 1.36(±0.06)×106 M1·s1, 2.62(±0.17)×107 M1·s1, 9.69(±0.08)×103 M1·s1, and 4.28(±0.07)×105 M1·s1, respectively; furthermore, the second-order rate constants for OH reaction with 5-FU and CAP at pH 7 were determined to be 1.85(±0.20)×109 M1·s1 and 9.95(±0.26)×109 M1·s1, respectively. Density functional theory was used to predict the main ozone reaction sites of 5-FU (olefin) and CAP (olefin and deprotonated secondary amine), and these mechanisms were supported by the identified transformation products. Carboxylic acids constituted a majority of the residual organic matter for 5-FU ozonation; however, carboxylic acids and aldehydes were important components of the residual organic matter generated by CAP. Ozone removed the toxicity of 5-FU to Vibrio fischeri, but the residual toxicity of ozonated CAP solutions exhibited an initial increase before subsequent removal. Ultimately, these results suggest that ozone is a suitable technology for treatment of 5-FU and CAP, although the residual toxicity of transformation products must be carefully considered.  相似文献   
182.
A screening test method for potential toxicity of biodegradable plastics on humans and the environment was selected and evaluated with samples of cellulose acetate, Bionolle, polyhydroxybutyrate-co-valerate (Biopol), and polycaprolactone (Tone polymer). Among the standardin vitro tests using animal cell cultures for the evaluation of biomedical materials, the test by direct contact and the test with extract were examined. Qualitative and quantitative determinations of the cell viability and morphology indicate that the test with extracts can be easily performed, providing reproducible and comparable results for all materials. Using the cell culture test with the extract of sterile samples, an estimation of the toxicity of a new polymeric material can be obtained within a few weeks.  相似文献   
183.
Since 1972, 10 benthic surveys and 9 static fish bioassays have been conducted to assess the impact of AVTEX Fibers, Inc. effluent on the lower South Fork of the Shenandoah River. AVTEX (formerly FMC Corp.) is a rayon and polyester fibers plant located in Front Royal, Virginia. Benthic samples were taken at four stations, one above and three below the plant discharges. Single surveys in 1972 and 1973 indicated a severe impact on the benthic community along the right side of the river, below the plant, as a result of the channelized effluent. Diversity values (¯d) were low (0–2.42) and numbers of taxa and organisms were reduced. A fish bioassay in 1973 indicated the effluent to be acutely toxic at the 34.5% level (mixture of effluent and river water). In early 1974, FMC Corp. constructed an activated sludge treatment system to reduce BOD and supplement the neutralization and chemical precipitation (zinc hydroxide and liquid-solid separation) facilities that had been used to treat waste waters since 1948. After the new equipment was placed in operation, the previously stressed area became more stable. In 1975 and 1976 the stressed area exhibited greater ¯d values (1.19–3.39) and an increased number of taxa and organisms. Bioassays showed the effluent to be acutely toxic to fish only once since 1973. The major improvements in the effluent were a 70% reduction in BOD5 and a 60% reduction in the amount of zinc entering the river. Community conditions in 1977 indicated a partial remission of improvement, probably due to drought conditions.The rehabilitation of damaged ecosystems is a process important to all biologists. An important factor in encouraging industry to participate in this activity is evidence that improved waste treatment will often have demonstrable biological benefits rather soon. As data accumulate on the recovery process it may be possible to predict the degree of rehabilitation and time required more precisely.  相似文献   
184.
Toxicity investigations were conducted for four pyridinium chlorides belonging to cationic surface-active substances (CSAS), which differed from each other in the numbers of methyl groups (CH(3)) in pyridinium ring.The crustacean Daphnia magna, the fish Lebistes reticulatus and the alga Scenedesmus quadricauda were chosen as biotests. Toxicity of examined preparations appeared to be very high but did not depend on their chemical structure. S. quadricauda was the most sensitive organism. Toxicity of intermediate products obtained in biological oxidation process was also examined. Biodegradation was conducted according to the "river water test". It was found that only partial degradation took place while pyridinium chlorides constituted main energy and carbon source. Presence of biodegradation intermediate products was shown on the basis of 1H NMR analysis. Intermediates were not toxic to any biotests.  相似文献   
185.
The article describes the influence of wood preservatives on water bioceonosis. The “battery” of toxicology tests was used to cover luminescent bacteria test, algae growth inhibition test, crustacean and fish lethal tests. The test samples used were pure wood preservative and water after the wood preservative leaching from wood sample. It was observed that the wood preservative is leaching from the wood sample in 10% within 1 month of exposition. Achieved results indicate the necessity of toxic assessment of wood preservative after wood element protection.  相似文献   
186.
Understanding the effects of oxalic acid (OA) on the immobilization of Pb(II) in contaminated soils by phosphate materials, has considerable benefits for risk assessment and remediation strategies for the soil. A series of phosphate amendments with/without oxalic acid were applied to two anthropogenic contaminated soils. We investigated the immobilization of Pb(II) by KH2PO4, phosphate rock (PR), activated phosphate rock (APR) and synthetic hydroxyapatite (HAP) at different phosphate:Pb (P:Pb) molar ratios (0, 0.6, 2.0 and 4.0) in the presence/absence of 50 mmol oxalic acid/kg soil, respectively. The effects of treatments were evaluated using single extraction with deionized water or CaCl2, Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) methods. Our results showed that the concentration of water extractable, exchangeable and TCLP-Pb all decreased with incubation time. The concentration of water-extractable Pb after 120 days was reduced by 100% when soils were amended with APR, HAP and HAP + OA, and the TCLP-Pb was < 5 mg/L for the red soil at P:Pb molar ratio 4.0.Water-soluble Pb could not be detected and the TCLP-Pb was < 5 mg/L at all treatments applied to the yellow-brown soil. BCR results indicated that APRwasmost effective, although a slight enhancement of water-soluble phosphate was detected at the P:Pbmolar ratio 4.0 at the beginning of incubation. Oxalic acid activated phosphates, and so mixing insoluble phosphates with oxalic acid may be a useful strategy to improve their effectiveness in reducing Pb bioavailability.  相似文献   
187.
The bioremediation of a long-term contaminated soil through biostimulation and surfactant addition was evaluated. The concentrations of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (DDE) were monitored during an 8-week remediation process. Physicochemical characterization of the treated soil was performed before and after the bioremediation process. The isolation and identification of predominant microorganisms during the remediation process were also carried out. The efficiency of detoxification was evaluated after each bioremediation protocol. Humidity and pH and the heterotrophic microorganism count were monitored weekly. The DDT concentration was reduced by 79% after 8 weeks via biostimulation with surfactant addition (B + S) and 94.3% via biostimulation alone (B). Likewise, the concentrations of the metabolites DDE and DDD were reduced to levels below the quantification limits. The microorganisms isolated during bioremediation were identified as Bacillus thuringiensis, Flavobacterium sp., Cuprivadius sp., Variovorax soli, Phenylobacterium sp. and Lysobacter sp., among others. Analysis with scanning electron microscopy (SEM) allowed visualization of the colonization patterns of soil particles. The toxicity of the soil before and after bioremediation was evaluated using Vibrio fischeri as a bioluminescent sensor. A decrease in the toxic potential of the soil was verified by the increase of the concentration/effect relationship EC50 to 26.9% and 27.2% for B + S and B, respectively, compared to 0.4% obtained for the soil before treatment and 2.5% by natural attenuation after 8 weeks of treatment.  相似文献   
188.
The bioremediation of a long-term contaminated soil through biostimulation and surfactant addition was evaluated. The concentrations of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane(DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane(DDD) and1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene(DDE) were monitored during an 8-week remediation process. Physicochemical characterization of the treated soil was performed before and after the bioremediation process. The isolation and identification of predominant microorganisms during the remediation process were also carried out. The efficiency of detoxification was evaluated after each bioremediation protocol. Humidity and p H and the heterotrophic microorganism count were monitored weekly. The DDT concentration was reduced by 79% after 8 weeks via biostimulation with surfactant addition(B + S) and 94.3%via biostimulation alone(B). Likewise, the concentrations of the metabolites DDE and DDD were reduced to levels below the quantification limits. The microorganisms isolated during bioremediation were identified as Bacillus thuringiensis, Flavobacterium sp., Cuprivadius sp.,Variovorax soli, Phenylobacterium sp. and Lysobacter sp., among others. Analysis with scanning electron microscopy(SEM) allowed visualization of the colonization patterns of soil particles. The toxicity of the soil before and after bioremediation was evaluated using Vibrio fischeri as a bioluminescent sensor. A decrease in the toxic potential of the soil was verified by the increase of the concentration/effect relationship EC50 to 26.9% and 27.2% for B + S and B, respectively, compared to 0.4% obtained for the soil before treatment and 2.5%by natural attenuation after 8 weeks of treatment.  相似文献   
189.
Highly hydrophobic Di 2-ethyl hexyl phthalate (DEHP) is one of the most prevalent plasticizers in wastewaters. Since its half-life in biological treatment is around 25 days, it can be used as an efficiency indicator of wastewater treatment plant for the removal of hydrophobic emerging contaminants. In this study, the performance of submerged membrane bioreactor was monitored to understand the effect of DEHP on the growth of aerobic microorganisms. The data showed that the chemical oxygen demand (COD) and ammonia concentration were detected below 10 and 1.0 mg/L, respectively for operating conditions of hydraulic retention time (HRT) = 4 and 6 hr, sludge retention time (SRT) = 140 day and sludge concentration between 11.5 and 15.8 g volatile solid (VS)/L. The removal efficiency of DEHP under these conditions was higher and ranged between 91% and 98%. Results also showed that the removal efficiency of DEHP in biological treatment depended on the concentration of sludge, as adsorption is the main mechanism of its removal. For the submerged membrane bioreactor, the pore size is the pivotal factor for DEHP removal, since it determines the amount of soluble microbial products coming out of the process. Highly assimilated microorganisms increase the biodegradation rate, as 74% of inlet DEHP was biodegraded; however, the concentration of DEHP inside sludge was beyond the discharge limit. Understanding the fate of DEHP in membrane bioreactor, which is one of the most promising and futuristic treatment process could provide replacement for conventional processes to satisfy the future stricter regulations on emerging contaminants.  相似文献   
190.
本文研究了偶氮染料对藻类生长及若干生理代谢过程的影响。 实验结果表明,偶氮染料对藻的生长速率及生物量均有一定的影响。与藻的叶绿素合成相比,藻的光合放氧对偶氮染料较敏感。偶氮染料能抑制藻的ATP酶活性,其原因之一可能与偶氮染料与ATP的相互作用有关。 统计分析结果表明,藻对偶氮染料具较强的耐受性,这就为实际工作中利用藻类净化印染废水提供了保证。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号