首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   3篇
  国内免费   7篇
废物处理   1篇
环保管理   3篇
综合类   11篇
基础理论   8篇
污染及防治   13篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   11篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
排序方式: 共有36条查询结果,搜索用时 0 毫秒
31.
The intensive and abundant use of synthetic herbicides has been questioned in recent decades due to the strong dependence and also the resistance effects that are identified in weeds. Several grain crops suffer from the weed control system because many of the weeds are already resistant to the main herbicides that are used. In recent years, there has been a large gap in the market without the addition of new synthetic herbicides with mechanisms of action that differ from those already existing. The objective of this short piece is to address and overcome this challenge and bring an innovative and alternative solution that proposes a synergistic action system between bioherbicides produced by the fungus Trichoderma koningiopsis and synthetic herbicides (2,4‐dichlorophenoxyacetic acid, glyphosate, and ammonium glufosinate). The plants included in this study were Bidens pilosa (amor seco, or in the United States, beggar ticks or Spanish needle), Euphorbia heterophylla (adeus‐brasil), and Conyza bonariensis (margaridinha‐do‐campo, or, in the United States, hairy fleabane or asthmaweed). It was verified that, in the application of the biocomposites in the presence of chemical herbicides, potentiation of the phytotoxic action (100%) occurred under the target plants, emphasizing phytotoxicity to the weed, C. bonariensis, which is currently resistant to available herbicides. The bioherbicides studied have promising characteristics to be explored in the biocontrol of weeds.  相似文献   
32.
The capacity of two soil fungi, Trichoderma koningii and Penicillium janthinellum, to oxidize n-C10:0 and n-C11:0 fatty acids to CO2 and store intracellular lipids during growth is unknown. This article reports for the first time the metabolism of decanoic acid (DA, C10:0), undecanoic acid (UDA, n-C11:0), a mixture of the acids (UDA+DA) and a mixture of UDA+ potato dextrose broth (PDB) by T. koningii and P. janthinellum and their mixed culture. A control PDB complex substrate was used as a substrate control treatment. The fungal cultures were assayed for their capacity to: (1) oxidize n-C10:0 and n-C11:0 fatty acids to CO2 and (2) store lipids intracellularly during growth. On all four fatty acid substrates, the mixed T. koningii and P. janthinellum culture produced more biomass and CO2 than the individual fungal cultures. Per 150 mL culture, the mixed species culture grown on UDA+PDB and on PDB alone produced the most biomass (7,567 mg and 11,425 mg, respectively). When grown in DA, the mixed species culture produced the least amount of biomass (6,400 mg), a quantity that was lower than those obtained in UDA (7,550 mg) or UDA+DA (7,270 mg). Amounts of CO2 produced ranged from 210 mg under DA to 618 mg under PDB, and these amounts were highly correlated with biomass (r2 = 0.99). Fluorescence microscopy of stained lipids in the mixed fungal cell cultures growing during the exponential phase demonstrated larger fungal cells and higher accumulation of lipids in membranes and storage bodies than those observed during the lag and stationary phases. T. koningii and P. janthinellum grown on n-C10:0 and n-C11:0 fatty acids produced lower amounts of biomass and CO2, but stored higher amounts of intracellular lipids, than when grown on PDB alone.  相似文献   
33.
如何提高酶蛋白的热稳定性是分子生物学、微生物学、生化工程学等学科长期所关注的重要研究课题之一.本文研究了多种添加剂对绿色木霉纤维素酶热稳定性的影响.在60℃的溶液中,多元醇(乙二醇、甘油、赤藓糖醇、木糖醇和山梨糖醇)能提高该酶的热稳定性,随着浓度的增加,赤藓糖醇、木糖醇和山梨糖醇促进酶的热稳定性呈线性增高;适当的多元醇分子长度对该酶的热稳定性有最优的保护效应;不同浓度和不同分子量的聚乙二醇对该酶的热稳定性具有明显的影响;在无机盐中,单价金属阳离子比二价金属阳离子更能显著地提高该酶的热稳定性;酶液溶剂的改变直接影响着该酶的热稳定性,该酶在D2O溶液中比在水溶液中稳定,其酶活半衰期延长了2.6倍.研究表明,热环境使酶蛋白分子的螺旋结构发生变化而失活,但某些溶质和溶剂的存在可能通过作用于蛋白质分子的三维结构而影响该酶的热稳定性.图7参15  相似文献   
34.
Trichoderma spp. biosynthesize 6-pentyl-2H-pyran-2-one (6-PP), a natural antifungal pyrone which could be used as biological control agent (BCA). Unfortunately, biotechnical processes are limited by inhibition of biomass at high concentration of 6-PP. We report herein a new easy synthesis of this natural pyrone, using readily available starting materials. This synthesis, compatible with a large production scale, permit to obtain overweight amounts of 6-PP that in biotechnological routes.  相似文献   
35.
Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 0.328) mg/g.  相似文献   
36.
虫草头孢菌发酵废液成分分析及其再利用   总被引:4,自引:0,他引:4       下载免费PDF全文
利用高效液相色谱法、氨基酸自动分析法和分光光谱法对虫草头抱菌发酵液成分进行了测定和分析,发现内含多种营养成分,完全有可能再次利用.用由该发酵液经加热、加活性炭和中药添加剂处理制备而成的组合培养液来培养哈茨木霉,具有产孢量高、培养成本低的优点.试验还发现,以组合培养液和麦麸为主要成分的新型固体培养基完全可以代替纯麦麸培养基.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号