首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   19篇
  国内免费   46篇
安全科学   38篇
环保管理   34篇
综合类   225篇
基础理论   102篇
环境理论   1篇
污染及防治   17篇
评价与监测   10篇
社会与环境   9篇
灾害及防治   12篇
  2023年   4篇
  2022年   6篇
  2021年   13篇
  2020年   7篇
  2019年   7篇
  2018年   6篇
  2017年   6篇
  2016年   8篇
  2015年   4篇
  2014年   8篇
  2013年   17篇
  2012年   9篇
  2011年   32篇
  2010年   12篇
  2009年   14篇
  2008年   16篇
  2007年   17篇
  2006年   28篇
  2005年   20篇
  2004年   23篇
  2003年   18篇
  2002年   16篇
  2001年   13篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   14篇
  1994年   15篇
  1993年   6篇
  1992年   10篇
  1991年   17篇
  1990年   3篇
  1989年   14篇
  1988年   10篇
  1987年   13篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
排序方式: 共有448条查询结果,搜索用时 312 毫秒
261.
高东 《生态环境》2010,19(8):1999-2003
农业集约化生产方式加速了农业生态系统单一化的进程,导致系统平衡破坏,病、虫、草害频发。在以农业生态环境改善和修复为手段的农业可持续生产和发展的模式中,以农作物多样性的合理布局来提高农业生物多样性水平和控制病、虫、草害的实践,显示出其强大的生命力,即将不同物种的作物或同一作物的不同品种按一定的组合方式和栽种模式进行合理的间栽和套作,将病、虫、草害的发生控制在可以承受的范围内。构建水生动物、水生植物与水稻共存的稻作系统,利用物种多样性、遗传多样性控制有害生物,是农业可持续发展的重要途径。本文综述了国内外稻田物种多样性、遗传多样性利用模式的研究进展,论述了稻田物种多样性、遗传多样性对稻作生态系统的改善,特别是水稻病、虫、草的控制效果及作用机理。  相似文献   
262.
为定量评估突发公共卫生事件下的公交暴露风险,基于公交线网、交通分析区及新型冠状病毒肺炎(COVID-19)疫情信息等多源数据,考虑公交站点、交通分析区及疫情场所3种研究尺度,集成公交网络结构拓扑模型、公交网络中心性模型及核密度分析等空间分析方法,提出公交暴露风险的多尺度辨识方法,并以深圳市为例进行验证。结果表明:公交站点暴露风险在空间上呈现多中心—圈层结构,较高及高暴露风险站点多为交通枢纽、商场等,占比达26.40%;较高及高暴露风险交通分析区主要分布在工业、商业聚集区及居民点密集区,占比达32.84%;较高及高暴露风险疫情场所主要集中在城市核心区域,占比为28.92%。  相似文献   
263.
The hypothesis of disease-related large mammal extinction has new support. A unique pathologic zone of resorption was first noticed in a Hiscock Mammut americanum metacarpal. The pathognomonic zone of resorption was present in fifty-nine (52%) of 113 skeletons with feet available for examination. Metacarpals and metatarsals were most commonly affected. Associated rib periosteal reaction is highly suggestive of tuberculosis and the foot lesions were identical to that documented in Bison as pathognomonic for tuberculosis. Recognizing that only a portion of animals infected by infectious tuberculosis develop bone involvement, the high frequency of the pathology in M. americanum suggests that tuberculosis was not simply endemic, but actually pandemic, a hyperdisease. Pandemic tuberculosis was one of several probable factors contributing to mastodon extinction.  相似文献   
264.
265.
Predicting and preventing outbreaks of infectious disease in endangered wildlife is problematic without an understanding of the biotic and abiotic factors that influence pathogen transmission and the genetic variation of microorganisms within and between these highly modified host communities. We used a common commensal bacterium, Campylobacter spp., in endangered Takahe (Porphyrio hochstetteri) populations to develop a model with which to study pathogen dynamics in isolated wildlife populations connected through ongoing translocations. Takahe are endemic to New Zealand, where their total population is approximately 230 individuals. Takahe were translocated from a single remnant wild population to multiple offshore and mainland reserves. Several fragmented subpopulations are maintained and connected through regular translocations. We tested 118 Takahe from 8 locations for fecal Campylobacter spp. via culture and DNA extraction and used PCR for species assignment. Factors relating to population connectivity and host life history were explored using multivariate analytical methods to determine associations between host variables and bacterial prevalence. The apparent prevalence of Campylobacter spp. in Takahe was 99%, one of the highest reported in avian populations. Variation in prevalence was evident among Campylobacter species identified. C. sp. nova 1 (90%) colonized the majority of Takahe tested. Prevalence of C. jejuni (38%) and C. coli (24%) was different between Takahe subpopulations, and this difference was associated with factors related to population management, captivity, rearing environment, and the presence of agricultural practices in the location in which birds were sampled. Modeling results of Campylobacter spp. in Takahe metapopulations suggest that anthropogenic management of endangered species within altered environments may have unforeseen effects on microbial exposure, carriage, and disease risk. Translocation of wildlife between locations could have unpredictable consequences including the spread of novel microbes between isolated populations.  相似文献   
266.
Island populations are vulnerable to introduced pathogens, as evidenced by extinction or population decline of several endemic Hawaiian birds caused by the malaria parasite, Plasmodium relictum (order Haemosporida). We analyzed blood samples from 363 birds caught near Guantánamo Bay, Cuba, for the presence of haemosporidian infections. We characterized parasite lineages by determining nucleotide variation of the parasite's mitochondrial cyt b gene. Fifty‐nine individuals were infected, and we identified 7 lineages of haemosporidian parasites. Fifty individuals were infected by 6 Haemoproteus sp. lineages, including a newly characterized lineage of Haem. (Parahaemoproteus) sp. CUH01. Nine individuals carried the P. relictum lineage GRW4, including 5 endemic Cuban Grassquits (Tiaris canorus) and 1 migratory Cape May Warbler (Setophaga tigrina). A sequence of the merozoite surface protein gene from one Cuban Grassquit infected with GRW4 matched that of the Hawaiian haplotype Pr9. Our results indicate that resident and migratory Cuban birds are infected with a malaria lineage that has severely affected populations of several endemic Hawaiian birds. We suggest GRW4 may be associated with the lack of several bird species on Cuba that are ubiquitous elsewhere in the West Indies. From the standpoint of avian conservation in the Caribbean Basin, it will be important to determine the distribution of haemosporidian parasites, especially P. relictum GRW4, in Cuba as well as the pathogenicity of this lineage in species that occur and are absent from Cuba.  相似文献   
267.
Coral diseases have increased in frequency over the past few decades and have important influences on the structure and composition of coral reef communities. However, there is limited information on the etiologies of many coral diseases, and pathways through which coral diseases are acquired and transmitted are still in question. Furthermore, it is difficult to assess the impacts of disease on coral populations because outbreaks often co-occur with temperature-induced bleaching and anthropogenic stressors. We developed spatially explicit population models of coral disease and bleaching dynamics to quantify the impact of six common diseases on Florida Keys corals, including aspergillosis, dark spots, white band, white plague, white patch, and Caribbean yellow band. Models were fit to an 8-year data set of coral abundance, disease prevalence, and bleaching prevalence. Model selection was used to assess alternative pathways for disease transmission, and the influence of environmental stressors, including sea temperature and human population density, on disease prevalence and coral mortality. Classic disease transmission from contagious to susceptible colonies provided the best-fit model only for aspergillosis. For other diseases, external disease forcing, such as through a vector or directly from pathogens in the environment, provided the best fit to observed data. Estimates of disease reproductive ratio values (R0) were less than one for each disease, indicating coral colonies were below densities required for diseases to become established through contagious spread alone. Incidences of white band and white patch disease were associated with greater susceptibility or slower recovery of bleached colonies, and no disease outbreaks were associated with periods of elevated sea temperatures alone. Projections of best-fit models indicated that, atleast during the period of this study, disease and bleaching did not have substantial impacts on populations and impaired rates of population growth appeared to be attributable to other stressors. By applying epidemiological models to field data, our study gives qualitative insights into the dynamics of coral diseases, relative stressor impacts, and directions for future research.  相似文献   
268.
Abstract:   Widespread reports of malformed amphibians are of growing conservation concern. Although accounts of mass malformations (>5%) in North American amphibian populations date back to the 1940s, they are often poorly documented and are rarely explained. We reviewed available information for nine historical accounts from California, Colorado, Idaho, Mississippi, Montana, Ohio, and Texas reported between 1946 and 1988. We then asked the following questions: (1) Which of these cases were associated with Ribeiroia (Trematoda: Digenea) infection? (2) Are malformations still occurring at these sites? And (3) if so, have the frequency or types of abnormalities changed? Each site was resurveyed between 1999 and 2002, and original voucher specimens were redescribed and examined for trematode infection. Direct identification and classification by discriminant function analysis indicated that historical malformations at six of eight sites were associated with infection by Ribeiroia , dating back as far as 1946. Malformations recorded historically at these sites were consistent with the documented effects of Ribeiroia infection, including extra limbs, cutaneous fusion, and bony triangles. Of the six sites that still supported amphibians upon resurvey, three continued to support severe limb malformations at frequencies of 7–50% in one or more species. Although no pesticides were detected, amphibians from each of these sites were infected with Ribeiroia metacercariae. Taken together, these results suggest that Ribeiroia infection has historically been an important cause of mass malformations in amphibians. We conclude that although parasite-induced malformations are not a new phenomenon, there is qualitative evidence suggesting that their prevalence has increased recently, and we highlight the need for long-term research to evaluate the impacts of malformations on amphibian population viability.  相似文献   
269.
Abstract:  Disease is increasingly recognized as a threat to the conservation of wildlife, and in many cases the source of disease outbreaks in wild carnivores is the domestic dog. For disease to spill over from a domestic to a wild population, three conditions must be satisfied: susceptibility of the wild species, presence of the disease agent in the domestic population, and contact between the two populations of interest. We investigated the potential for disease spillover from the domestic dog population to the wild carnivore population in the Isoso of Bolivia, an area of tropical dry forest contiguous with a national park. Using questionnaires and discussions with residents, we gathered data on the demography of dogs in the Isoso, including adult and neonatal mortality, litter size, and hunting frequency. We analyzed a large data set containing self-recorded information on hunting in various communities of the Isoso to determine the extent of dog participation in hunting and the duration of hunting trips. Finally, we took blood samples from dogs in the Isoso for a serosurvey of common canine pathogens. More than 95% of dogs had positive titers to canine distemper virus and canine parvovirus. There was also a high seroprevalence in dogs for other pathogens, a high population turnover of dogs (which may allow diseases to be maintained endemically), and frequent opportunities for contact between domestic and wild carnivores. Based on our results and the susceptibility of wild species previously reported in the literature, domestic dogs represent a disease risk for wildlife in the Bolivian Isoso.  相似文献   
270.
Abstract:  Emerging infectious diseases are a key threat to conservation and public health, yet predicting and preventing their emergence is notoriously difficult. We devised a predictive model for the introduction of a zoonotic vector-borne pathogen by considering each of the pathways by which it may be introduced to a new area and comparing the relative risk of each pathway. This framework is an adaptation of pest introduction models and estimates the number of infectious individuals arriving in a location and the duration of their infectivity. We used it to determine the most likely route for the introduction of West Nile virus to Galápagos and measures that can be taken to reduce the risk of introduction. The introduction of this highly pathogenic virus to this unique World Heritage Site could have devastating consequences, similar to those seen following introductions of pathogens into other endemic island faunas. Our model identified the transport of mosquitoes on airplanes as the highest risk for West Nile virus introduction. Pathogen dissemination through avian migration and the transportation of day-old chickens appeared to be less important pathways. Infected humans and mosquitoes transported in sea containers, in tires, or by wind all represented much lower risk. Our risk-assessment framework has broad applicability to other pathogens and other regions and depends only on the availability of data on the transport of goods and animals and the epidemiology of the pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号