全文获取类型
收费全文 | 1834篇 |
免费 | 605篇 |
国内免费 | 30篇 |
专业分类
安全科学 | 51篇 |
废物处理 | 5篇 |
环保管理 | 49篇 |
综合类 | 347篇 |
基础理论 | 1841篇 |
污染及防治 | 75篇 |
评价与监测 | 47篇 |
社会与环境 | 33篇 |
灾害及防治 | 21篇 |
出版年
2025年 | 1篇 |
2024年 | 96篇 |
2023年 | 105篇 |
2022年 | 103篇 |
2021年 | 134篇 |
2020年 | 137篇 |
2019年 | 125篇 |
2018年 | 117篇 |
2017年 | 150篇 |
2016年 | 124篇 |
2015年 | 162篇 |
2014年 | 166篇 |
2013年 | 185篇 |
2012年 | 130篇 |
2011年 | 139篇 |
2010年 | 141篇 |
2009年 | 58篇 |
2008年 | 86篇 |
2007年 | 38篇 |
2006年 | 46篇 |
2005年 | 28篇 |
2004年 | 20篇 |
2003年 | 26篇 |
2002年 | 23篇 |
2001年 | 15篇 |
2000年 | 13篇 |
1999年 | 18篇 |
1998年 | 15篇 |
1997年 | 10篇 |
1996年 | 7篇 |
1995年 | 8篇 |
1994年 | 8篇 |
1993年 | 8篇 |
1992年 | 6篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1977年 | 2篇 |
1975年 | 1篇 |
排序方式: 共有2469条查询结果,搜索用时 15 毫秒
611.
Alberto J. Alaniz;Pablo A. Marquet;Mario A. Carvajal;Pablo M. Vergara;Darío Moreira-Arce;Miguel A. Muzzio;David A. Keith; 《Conservation biology》2024,38(4):e14247
Climate change is one of the most important drivers of ecosystem change, the global-scale impacts of which will intensify over the next 2 decades. Estimating the timing of unprecedented changes is not only challenging but is of great importance for the development of ecosystem conservation guidelines. Time of emergence (ToE) (point at which climate change can be differentiated from a previous climate), a widely applied concept in climatology studies, provides a robust but unexplored approach for assessing the risk of ecosystem collapse, as described by the C criterion of the International Union for Conservation of Nature's Red List of Ecosystems (RLE). We identified 3 main theoretical considerations of ToE for RLE assessment (degree of stability, multifactorial instead of one-dimensional analyses, and hallmarks of ecosystem collapse) and 4 sources of uncertainty when applying ToE methodology (intermodel spread, historical reference period, consensus among variables, and consideration of different scenarios), which aims to avoid misuse and errors while promoting a proper application of the framework by scientists and practitioners. The incorporation of ToE for the RLE assessments adds important information for conservation priority setting that allows prediction of changes within and beyond the time frames proposed by the RLE. 相似文献
612.
The European Union’s Green Deal and associated policies, aspiring to long-term environmental sustainability, now require economic activities to ‘do no significant harm’ to EU environmental objectives. The way the European Commission is enacting the do no significant harm principle relies on quantitative tools that try to identify harm and adjudicate its significance. A reliance on established technical approaches to assessing such questions ignores the high levels of imprecision, ambiguity, and uncertainty—levels often in flux—characterizing the social contexts in which harms emerge. Indeed, harm, and its significance, are relational, not absolute. A better approach would thus be to acknowledge the relational nature of harm and develop broad capabilities to engage and ‘stay with’ the harm. We use the case of European research and innovation activities to expose the relational nature of harm, and explore an alternative and potentially more productive approach that departs from attempts to unilaterally or uniformly claim to know or adjudicate what is or is not significantly harmful. In closing, we outline three ways research and innovation policy-makers might experiment with reconfiguring scientific and technological systems and practices to better address the significant harms borne by people, other-than-human beings, and ecosystems. 相似文献
613.
Jorge Galindo-González; 《Conservation biology》2024,38(3):e14232
Circumstances that precipitate interactions among species that have never interacted during their evolutionary histories create ideal conditions for the generation of zoonoses. Zoonotic diseases have caused some of the most devastating epidemics in human history. Contact among species that come from different ecosystems or regions creates the risk of zoonoses. In certain situations, humans are generating and promoting conditions that contribute to the creation of infectious diseases and zoonoses. These conditions lead to interactions between wildlife species that have hitherto not interacted under normal circumstances. I call for recognition of the zoonotic potential that novel and unwanted interactions have; identification of these new interactions that are occurring among wild animals, domestic animals, and humans; and efforts to stop these kinds of interactions because they can give rise to zoonotic outbreaks. Live animal markets, the exotic pet trade, illegal wildlife trade, human use and consumption of wild animals, invasive non-native species, releasing of exotic pets, and human encroachment in natural areas are among the activities that cause the most interactions among wild species, domestic species, and humans. These activities should not occur and must be controlled efficiently to prevent future epidemic zoonoses. Society must develop a keen ability to identify these unnatural interactions and prevent them. Controlling these interactions and efficiently addressing their causal factors will benefit human health and, in some cases, lead to positive environmental, ethical, and socioeconomic outcomes. Until these actions are taken, humanity will face future zoonoses and zoonotic pandemic. 相似文献
614.
Tovah Siegel;Ainhoa Magrach;William F. Laurance;David Luther; 《Conservation biology》2024,38(3):e14206
Forest fragmentation is a grave threat to biodiversity. Forests are becoming increasingly fragmented with more than 70% now < 1 km from forest edge. Although much is known about the effects of forest fragmentation on individual species, much less is understood about its effects on species interactions (i.e., mutualisms, antagonisms, etc.). In 2014, a previous meta-analysis assessed the impacts of forest fragmentation on different species interactions, across 82 studies. We pooled the previous data with data published in the last 10 years (combined total 104 studies and 168 effect sizes). We compared the new set of publications (22 studies and 32 effect sizes) with the old set to evaluate potential changes in species interactions over time given the global increase in fragmentation rates. Mutualisms were more negatively affected by forest fragmentation than antagonisms (p < 0.0001). Edge effects, fragment size, and degradation negatively affected mutualisms, but not antagonisms, a different finding from the original meta-analysis. Parasitic interactions increased as fragment size decreased (p < 0.0001)—an intriguing result at variance with earlier studies. New publications showed a more negative mean effect size of forest fragmentation on mutualisms than old publications. Although research is still limited for some interactions, we identified an important scientific trend: current research tends to focus on antagonisms. We concluded that forest fragmentation disrupts important species interactions and that this disruption has increased over time. 相似文献
615.
Melissa B. Meierhofer;Joseph S. Johnson;Janette Perez-Jimenez;Fernanda Ito;Paul W. Webela;Sigit Wiantoro;Enrico Bernard;Krizler C. Tanalgo;Alice Hughes;Pedro Cardoso;Thomas Lilley;Stefano Mammola; 《Conservation biology》2024,38(1):e14157
Bats frequently inhabit caves and other subterranean habitats and play a critical role in subterranean food webs. With escalating threats to subterranean ecosystems, identifying the most effective measures to protect subterranean-roosting bats is critical. We conducted a meta-analysis to evaluate the effectiveness of conservation and management interventions for subterranean-roosting bats. We used network analyses to determine to what extent interventions for bats overlap those used for other subterranean taxa. We conducted our analyses with data extracted from 345 papers recommending a total of 910 conservation interventions. Gating of roost entrances was applied to preserve bat populations in 21 studies, but its effectiveness was unclear. Habitat restoration and disturbance reduction positively affected bat populations and bat behavior, respectively, in ≤4 studies. Decontamination was assessed in 2 studies and positively affected bat populations, particularly in studies focused on reducing fungal spores associated with white-nose syndrome in North America. Monitoring of bat populations as an effective conservation strategy was unclear and infrequently tested. Only 4% of bat studies simultaneously considered other subterranean organisms. However, effective interventions for bat conservation had similarities with all other organisms. If other subterranean organisms are considered when applying interventions to conserve bats, they might also benefit. 相似文献
616.
Heidi J. Albers;Charlotte H. Chang;Sahan T. M. Dissanayake;Kate J. Helmstedt;Kailin Kroetz;Bistra Dilkina;Irene Zapata-Mor´an;Christoph Nolte;Leticia M. Ochoa-Ochoa;Gwen Spencer; 《Conservation biology》2024,38(2):e14176
Biodiversity continues to decline despite protected area expansion and global conservation commitments. Biodiversity losses occur in existing protected areas, yet common methods used to select protected areas ignore postimplementation threats that reduce effectiveness. We developed a conservation planning framework that considers the ongoing anthropogenic threats within protected areas when selecting sites and the value of planning for costly threat-mitigating activities (i.e., enforcement) at the time of siting decisions. We applied the framework to a set of landscapes that contained the range of possible correlations between species richness and threat. Accounting for threats and implementing enforcement activities increased benefits from protected areas without increasing budgets. Threat information was valuable in conserving more species per spending level even without enforcement, especially on landscapes with randomly distributed threats. Benefits from including threat information and enforcement were greatest when human threats peaked in areas of high species richness and were lowest where human threats were negatively associated with species richness. Because acquiring information on threats and using threat-mitigating activities are costly, our findings can guide decision-makers regarding the settings in which to pursue these planning steps. 相似文献
617.
Megan J. Osborne;Thomas P. Archdeacon;Charles B. Yackulic;Robert K. Dudley;Guilherme Caeiro-Dias;Thomas F. Turner; 《Conservation biology》2024,38(1):e14154
Human water use combined with a recent megadrought have reduced river and stream flow through the southwest United States and led to periodic drying of formerly perennial river segments. Reductions in snowmelt runoff and increased extent of drying collectively threaten short-lived, obligate aquatic species, including the endangered Rio Grande silvery minnow (Hybognathus amarus). This species is subject to boom-and-bust population dynamics, under which large fluctuations in abundance are expected to lower estimates of effective population size and erode genetic diversity over time. Rates of diversity loss are also affected by additions of hatchery-origin fish used to supplement the wild population. We used demographic and genetic data from wild and hatchery individuals to examine the relationship of genetic diversity and effective population size to abundance over the last two decades. Genetic diversity was low during the early 2000s, but diversity and demographic metrics stabilized after the hatchery program was initiated and environmental conditions improved. Yet, from 2017 onward, allelic diversity declined (Cohen's d = 1.34) and remained low despite hatchery stocking and brief wild population recovery. Across the time series, single-sample estimates of effective population size based on linkage disequilibrium (LD Ne) were positively associated (r = 0.53) with wild abundance and total abundance, but as the proportion of hatchery-origin spawners increased, LD Ne declined (r = −0.55). Megadrought limited wild spawner abundance and precluded refreshment of hatchery brood stocks with wild fish; hence, we predict a riverine population increasingly dominated by hatchery-origin individuals and accelerated loss of genetic diversity despite supplementation. We recommend an adaptive and accelerated management plan that integrates river flow management and hatchery operations to slow the pace of genetic diversity loss exacerbated by megadrought. 相似文献
618.
Laura L. Griffiths;Joel Williams;Christina A. Buelow;Vivitskaia J. Tulloch;Mischa P. Turschwell;Max D. Campbell;David Harasti;Rod M. Connolly;Christopher J. Brown; 《Conservation biology》2024,38(2):e14177
The coastal environment is not managed in a way that considers the impact of cumulative threats, despite being subject to threats from all realms (marine, land, and atmosphere). Relationships between threats and species are often nonlinear; thus, current (linear) approaches to estimating the impact of threats may be misleading. We developed a data-driven approach to assessing cumulative impacts on ecosystems and applied it to explore nonlinear relationships between threats and a temperate reef fish community. We used data on water quality, commercial fishing, climate change, and indicators of recreational fishing and urbanization to build a cumulative threat map of the northern region in New South Wales, Australia. We used statistical models of fish abundance to quantify associations among threats and biophysical covariates and predicted where cumulative impacts are likely to have the greatest impact on fish. We also assessed the performance of no-take zones (NTZs), to protect fish from cumulative threats across 2 marine protected area networks (marine parks). Fishing had a greater impact on fish than water quality threats (i.e., percent increase above the mean for invertivores was 337% when fishing was removed and was 11% above the mean when water quality was removed inside NTZs), and fishing outside NTZs affected fish abundances inside NTZs. Quantifying the spatial influence of multiple threats enables managers to understand the multitude of management actions required to address threats. 相似文献
619.
Reed D. Crawford;Joy M. O'Keefe; 《Conservation biology》2024,38(1):e14170
Worldwide, artificial bat roosts (e.g., bat boxes, bark mimics, bat condos) are routinely deployed for conservation, mitigation, and community engagement. However, scant attention has been paid to developing best practices for the use of artificial roosts as conservation tools. Although bats readily occupy artificial roosts, occupancy and abundance data are misleading indicators of habitat quality. Lacking information on bat behavior, health, and fitness in artificial roosts, their conservation efficacy cannot be adequately validated. We considered the proximal and ultimate factors, such as evolutionarily reliable cues, that may prompt bats to preferentially use and show fidelity to suboptimal artificial roosts even when high-quality alternatives are available. Possible negative health and fitness consequences for artificial roost inhabitants include exposure to unstable and extreme microclimates in poorly designed roosts, and vulnerability to larger numbers of ectoparasites in longer lasting artificial roosts that house larger bat colonies than in natural roosts. Bats using artificial roosts may have lower survival rates if predators have easy access to roosts placed in conspicuous locations. Bats may be lured into occupying low-quality habitats if attractive artificial roosts are deployed on polluted urban and agricultural landscapes. To advance the science behind artificial bat roosts, we present testable research hypotheses and suggestions to improve the quality of artificial roosts for bats and decrease risks to occupants. Because continued loss of natural roosts may increase reliance on alternatives, such as artificial roosts, it is imperative that this conservation practice be improved. 相似文献
620.
Michelle A. Peach Jonathan B. Cohen Jacqueline L. Frair Benjamin Zuckerberg Patrick Sullivan William F. Porter Corey Lang 《Conservation biology》2019,33(2):423-433
Establishing protected areas, where human activities and land cover changes are restricted, is among the most widely used strategies for biodiversity conservation. This practice is based on the assumption that protected areas buffer species from processes that drive extinction. However, protected areas can maintain biodiversity in the face of climate change and subsequent shifts in distributions have been questioned. We evaluated the degree to which protected areas influenced colonization and extinction patterns of 97 avian species over 20 years in the northeastern United States. We fitted single-visit dynamic occupancy models to data from Breeding Bird Atlases to quantify the magnitude of the effect of drivers of local colonization and extinction (e.g., climate, land cover, and amount of protected area) in heterogeneous landscapes that varied in the amount of area under protection. Colonization and extinction probabilities improved as the amount of protected area increased, but these effects were conditional on landscape context and species characteristics. In this forest-dominated region, benefits of additional land protection were greatest when both forest cover in a grid square and amount of protected area in neighboring grid squares were low. Effects did not vary with species’ migratory habit or conservation status. Increasing the amounts of land protection benefitted the range margins species but not the core range species. The greatest improvements in colonization and extinction rates accrued for forest birds relative to open-habitat or generalist species. Overall, protected areas stemmed extinction more than they promoted colonization. Our results indicate that land protection remains a viable conservation strategy despite changing habitat and climate, as protected areas both reduce the risk of local extinction and facilitate movement into new areas. Our findings suggest conservation in the face of climate change favors creation of new protected areas over enlarging existing ones as the optimal strategy to reduce extinction and provide stepping stones for the greatest number of species. 相似文献