首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4466篇
  免费   346篇
  国内免费   459篇
安全科学   169篇
废物处理   45篇
环保管理   1062篇
综合类   1860篇
基础理论   827篇
环境理论   51篇
污染及防治   245篇
评价与监测   221篇
社会与环境   620篇
灾害及防治   171篇
  2024年   19篇
  2023年   88篇
  2022年   130篇
  2021年   150篇
  2020年   134篇
  2019年   186篇
  2018年   193篇
  2017年   244篇
  2016年   276篇
  2015年   245篇
  2014年   217篇
  2013年   382篇
  2012年   278篇
  2011年   368篇
  2010年   249篇
  2009年   270篇
  2008年   222篇
  2007年   252篇
  2006年   199篇
  2005年   162篇
  2004年   141篇
  2003年   147篇
  2002年   121篇
  2001年   89篇
  2000年   124篇
  1999年   97篇
  1998年   52篇
  1997年   49篇
  1996年   25篇
  1995年   29篇
  1994年   21篇
  1993年   38篇
  1992年   13篇
  1991年   10篇
  1990年   12篇
  1989年   4篇
  1988年   8篇
  1987年   4篇
  1985年   5篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有5271条查询结果,搜索用时 875 毫秒
641.
中巴地球资源一号卫星(CBERS-1)数据,为环境保护领域提供了重要的遥感信息源,在区域环境监测和生态环境保护中具有广阔的应用前景。将CBERS—1信息与地面监测站、数据传输与处理系统、地理信息系统(GIS)相结合,可以实现对区域环境准确、客观、动态、简捷、快速的监测。选择盘锦市的地面监测站与CBERS-1信息相结合,建立一套高效、准确、快捷的卫星动态遥感监测系统,为环境监控提供科学数据。  相似文献   
642.
川渝地区农业生态系统NH3排放   总被引:3,自引:0,他引:3  
基于县级农业活动水平数据及区域氮循环模型IAP-N方法,并根据地理特征、环境气候条件及地区行政区划将川渝地区划分成4个亚区,详细估算了1990~2004年川渝地区农业生态系统各氨排放源的排放及其时空分布状况.结果表明,1990~1994、1995~1999和2000~2004年3个时期,整个川渝地区农业生态系统氨(NH3)年均排放量(以纯氮量计)分别为626.7、670.5和698.8 Gg.a-1.氨排放年际变化呈增长趋势,各氨排放源贡献率的年际变化不大,2000~2004年川渝地区施肥农田、粪便管理系统和秸秆燃烧氨排放源的贡献率分别为53%、46%和1%,排放量分别为374.9、318.2和5.6 Gg.a-1.各地区的氨排放源结构有所不同,成都平原和重庆地区施肥农田氨排放贡献率最高,而川西南地区和川西北地区以粪便管理系统氨排放为主.川渝地区农业生态系统氨排放地理分布总体上呈"东高西低"现象,2000~2004年,重庆丘陵地区、成都平原地区、川西南山地区及川西北高原地区的氨排放量分别为165.6、408.8、85.9和38.8 Gg.a-1,氨排放强度分别为20、28、9.1和1.6kg.(hm2.a)-...  相似文献   
643.
煤与秸秆成型燃料的复合生命周期对比评价   总被引:3,自引:1,他引:2  
利用复合生命周期对比评价方法,引入能量返还率、资源耗竭系数、环境影响负荷和生命周期成本4个参数,对煤和秸秆成型燃料在整个生命周期内的能源消耗、环境影响和经济性做了对比分析.同时,为了平衡能源、环境与经济三者之间的关系,建立EEE (Energy, Environment, Economic)综合指标进行整体评价.结果表明,在整个生命周期内,与煤相比,秸秆成型燃料的能量返还率低、资源耗竭系数小.秸秆成型燃料的全球变暖潜值、酸化潜值、富营养化潜值、工业烟尘、粉尘潜值及固体废弃物潜值均比煤小,因此,秸秆成型燃料的环境影响负荷比煤小.秸秆成型燃料的EEE指标值比煤小79.8%,所以,从平衡生命周期能源消耗、环境排放和经济性角度出发,秸秆成型燃料具有替代煤的潜力.但是,秸秆成型燃料的生命周期成本比煤高,其大力推广需要政府的财政补贴.  相似文献   
644.
This paper examines the energy and carbon balance of two residential house alternatives; a typical wood frame home using more conventional materials (brick cladding, vinyl windows, asphalt shingles, and fibreglass insulation) and a similar wood frame house that also maximizes wood use throughout (cedar shingles and siding, wood windows, and cellulose insulation) in place of the more typical materials used – a wood-intensive house. Carbon emission and fossil fuel consumption balances were established for the two homes based on the cumulative total of three subsystems: (1) forest harvesting and regeneration; (2) cradle-to-gate product manufacturing, construction, and replacement effects over a 100-year service life; and (3) end-of-life effects – landfilling with methane capture and combustion or recovery of biomass for energy production.The net carbon balance of the wood-intensive house showed a complete offset of the manufacturing emissions by the credit given to the system for forest re-growth. Including landfill methane emissions, the wood-intensive life cycle yielded 20 tons of CO2e emissions compared to 72 tons for the typical house. The wood-intensive home's life cycle also consumed only 45% of the fossil fuels used in the typical house.Diverting wood materials from the landfill at the end of life improved the life cycle balances of both the typical and wood-intensive houses. The carbon balance of the wood-intensive house was 5.2 tons of CO2e permanently removed from the atmosphere (a net carbon sink) as compared to 63.4 of total CO2e emissions for the typical house. Substitution of wood fuel for natural gas and coal in electricity production led to a net energy balance of the wood-intensive house that was nearly neutral, 87.1 GJ energy use, 88% lower than the scenario in which the materials were landfilled.Allocating biomass generation and carbon sequestration in the forest on an economic basis as opposed to a mass basis significantly improves the life cycle balances of both houses. Employing an economic allocation method to the forest leads to 3–5 times greater carbon sequestration and fossil fuel substitution attributable to the house, which is doubled in forestry regimes that remove stumps and slash as fuel. Thus, wood use has the potential to create a significantly negative carbon footprint for a house up to the point of occupancy and even offset a portion of heating and cooling energy use and carbon emissions; the wood-intensive house is energy and carbon neutral for 34–68 years in Ottawa and has the potential to be a net carbon sink and energy producer in a more temperate climate like San Francisco.  相似文献   
645.
为分析高寒地区露天排土场稳定性,以乌努格吐山铜钼矿排土场为工程背景,结合室内试验并利用GeoStudio及FLAC3D软件对边坡进行模拟计算分析,给出边坡治理有效措施。结果表明:前3次冻融循环对散体物料的抗剪强度影响显著,后期影响则趋于稳定;6个剖面的安全系数普遍大于1.2,在地下水的干扰下,各剖面安全系数普遍下降,尤其是剖面E-E,其安全系数低于1,存在滑坡风险;水对边坡的安全性影响较大,其次提出削坡治理及布置抗滑桩措施,当边坡角度削减至31°时,边坡的安全系数增至为1.383;抗滑桩增至8根时,安全系数增加至1.296,这些措施对边坡的治理皆起到积极作用。研究结果可为高寒地区矿山安全开采提供技术支持。  相似文献   
646.
The High Plains Aquifer (HPA) underlies parts of eight states and 208 counties in the central area of the United States (U.S.). This region produces more than 9% of U.S. crops sales and relies on the aquifer for irrigation. However, these withdrawals have diminished the stock of water in the aquifer. In this paper, we investigate the aggregate county‐level effect on the HPA of groundwater withdrawal for irrigation, of climate variables, and of energy price changes. We merge economic theory and hydrological characteristics to jointly estimate equations describing irrigation behavior and a generalized water balance equation for the HPA. Our simple water balance model predicts, at average values for irrigation and precipitation, an HPA‐wide average decrease in the groundwater table of 0.47 feet per year, compared to 0.48 feet per year observed on average across the HPA during this 1985–2005 period. The observed distribution and predicted change across counties is in the (?3.22, 1.59) and (?2.24, 0.60) feet per year range, respectively. The estimated impact of irrigation is to decrease the water table by an average of 1.24 feet per year, whereas rainfall recharges the level by an average of 0.76 feet per year. Relative to the past several decades, if groundwater use is unconstrained, groundwater depletion would increase 50% in a scenario where precipitation falls by 25% and the number of degree days above 36°C doubles. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
647.
The Ganges Delta in Bangladesh is an example of water‐related catastrophes in a major rural river basin where limitations in quantity, quality, and timing of available water are producing disastrous conditions. Water availability limitations are modifying the hydrologic characteristics especially when water allocation is controlled from the upstream Farakka Barrage. This study presents the changes and consequences in the hydrologic regime due to climate‐ and human‐induced stresses. Flow duration curves (FDCs), rainfall elasticity, and temperature sensitivity were used to assess the pre‐ and post‐barrage water flow patterns. Hydrologic and climate indices were computed to provide insight on hydro‐climatic variability and trend. Significant increases in temperature, evapotranspiration, hot days, heating, and cooling degree days indicate the region is heading toward a warmer climate. Moreover, increase in high‐intensity rainfall of short duration is making the region prone to extreme floods. FDCs depict a large reduction in river flows between pre‐ and post‐barrage periods, resulting in lower water storage capacity. The reduction in freshwater flow increased the extent and intensity of salinity intrusion. This freshwater scarcity is reducing livelihood options considerably and indirectly forcing population migration from the delta region. Understanding the causes and directions of hydrologic changes is essential to formulate improve water resources management in the region.  相似文献   
648.
Anticipating changes in hydrologic variables is essential for making socioeconomic water resource decisions. This study aims to assess the potential impact of land use and climate change on the hydrologic processes of a primarily rain‐fed, agriculturally based watershed in Missouri. A detailed evaluation was performed using the Soil and Water Assessment Tool for the near future (2020–2039) and mid‐century (2040–2059). Land use scenarios were mapped using the Conversion of Land Use and its Effects model. Ensemble results, based on 19 climate models, indicated a temperature increase of about 1.0°C in near future and 2.0°C in mid‐century. Combined climate and land use change scenarios showed distinct annual and seasonal hydrologic variations. Annual precipitation was projected to increase from 6% to 7%, which resulted in 14% more spring days with soil water content equal to or exceeding field capacity in mid‐century. However, summer precipitation was projected to decrease, a critical factor for crop growth. Higher temperatures led to increased potential evapotranspiration during the growing season. Combined with changes in precipitation patterns, this resulted in an increased need for irrigation by 38 mm representing a 10% increase in total irrigation water use. Analysis from multiple land use scenarios indicated converting agriculture to forest land can potentially mitigate the effects of climate change on streamflow, thus ensuring future water availability.  相似文献   
649.
Climate change is a global phenomenon that it is experienced and understood in places. This research examined the ways in which community members understand, perceive, and experience climate change in the context of Thunder Bay Ontario; a mid-size and remote city located in Northern Ontario, using semi-structured walking interviews (N?=?18). Themes that emerged from the interview data are presented and discussed in relation to the literature. Results emphasise that participants conceptualise climate change as a complex ethical issue that is caused by greenhouse gas emissions and a range of underlying social, economic, and political factors. Participants identified numerous changes in weather, seasonality, and extreme events and anticipate future impacts on local and regional food, water, and forests primarily. Emotional impacts of climate change, ranging from worry to feeling hopeful, emerged as an important theme. The data illustrate that the observed, experienced, and anticipated impacts of climate change are shaped by experiences on the land and water within the community of Thunder Bay and the region of Northern Ontario. Finally, the interview data illustrate that participants believe that transformative action, by a range of actors, is called for to address the problem of climate change. This study highlights the importance of place-based and context-specific climate change research and the utility of walking interviews.  相似文献   
650.
There is overwhelming scientific consensus that environmental change is currently having ecological and socioeconomical impacts at the micro and macrolevel. Over the coming decades, the impact of development, climate change, and urbanization on the ecosystem is likely to become even more ruthless in the Sundarbans. Like many other ecologically sensitive areas, the Sundarbans of the Indian state of West Bengal and of Bangladesh are being stressed climatically to the extreme due to their geographical location. This study explores both the ways in which residents of communities in the West Bengal and Bangladesh Sundarbans perceive changes in the environment, as well as intergenerational changes in livelihoods to be driven in a large part by environmental changes. Persons from a total of 368 households were interviewed using a structured interview tool. As an example of differences in perception between residents of the two areas, survey respondents from communities of the Sundarbans of Bangladesh were more likely to perceive that rainfall amounts are changing than did the residents interviewed from the Sundarbans of West Bengal. From the sample data, it is shown that in the Sundarbans of Bangladesh, 59% of the respondents, as compared to 63% of the respondents in West Bengal, reported that they had chosen to enter their parents’ occupations. From the multivariate logistic regression analysis, it was observed that, especially in Bangladesh when compared to West Bengal, the state of the environment plays a vital role in whether respondents adopt occupations other than those of their parents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号