全文获取类型
收费全文 | 284篇 |
免费 | 82篇 |
国内免费 | 17篇 |
专业分类
安全科学 | 59篇 |
废物处理 | 45篇 |
环保管理 | 14篇 |
综合类 | 163篇 |
基础理论 | 37篇 |
污染及防治 | 53篇 |
评价与监测 | 9篇 |
灾害及防治 | 3篇 |
出版年
2024年 | 6篇 |
2023年 | 2篇 |
2022年 | 3篇 |
2021年 | 11篇 |
2020年 | 6篇 |
2019年 | 14篇 |
2018年 | 13篇 |
2017年 | 25篇 |
2016年 | 21篇 |
2015年 | 13篇 |
2014年 | 11篇 |
2013年 | 20篇 |
2012年 | 28篇 |
2011年 | 15篇 |
2010年 | 12篇 |
2009年 | 14篇 |
2008年 | 19篇 |
2007年 | 22篇 |
2006年 | 26篇 |
2005年 | 14篇 |
2004年 | 11篇 |
2003年 | 12篇 |
2002年 | 11篇 |
2001年 | 6篇 |
2000年 | 12篇 |
1999年 | 6篇 |
1998年 | 6篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1995年 | 5篇 |
1994年 | 1篇 |
1993年 | 5篇 |
1992年 | 1篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有383条查询结果,搜索用时 46 毫秒
141.
142.
建立了用气相色谱法测定环境空气中异丙醇的方法。环境空气中异丙醇以蒸馏水吸收,用(DB-624)弹性石英毛细管柱分离,直接进样分析,氢火焰离子化检测器检测。本方法以时间定性,峰面积定量,对实际样品进行分析,其异丙醇加标回收率为94.9%~104.5%,当采样体积为40 L,异丙醇最低检出质量浓度为0.05mg/m3。本方法前处理简便,分离度好干扰少,分析灵敏度高,不使用有机试剂以减少环境污染,满足环境分析要求。 相似文献
143.
电视机外壳热解油中含有的2,4,6-三溴苯酚、1,2,4,5-四溴苯、五溴二苯醚(P5BDE)等会严重影响其质量,为了净化电视机外壳热解油,试验用纯的1,2,4,5-四溴苯作原料,在单金属Pd/C作催化剂,异丙醇作氢源条件下进行催化脱溴研究.同时,研究了反应体系pH值(NaOH加入量)对1,2,4,5-四溴苯脱溴效率的影响,最后探讨了1,2,4,5-四溴苯催化脱溴的反应机理.结果表明,当温度设定为50℃,搅拌速度设定为900r·min-1,反应4h,脱溴效率可达100%;pH值在0~9之间时,pH越大,1,2,4,5-四溴苯脱溴效率越高;pH值≥9时,pH值增大,脱溴效率保持不变.实验用Pd/C作催化剂,经处理后可重复使用,并且产物为苯,在工业上的应用非常广泛,该实验具有很高的实用性. 相似文献
144.
采用一体式部分亚硝化-厌氧氨氧化反应器研究了酒精废水脱氮的可行性.结果表明,在pH 7.8±0.5,温度30~35℃,好氧区ORP值120~150 mV的条件下,历时40 d成功地启动了一体式PN-ANAMMOX反应器,总氮去除速率由0.125kg·(m~3·d)~(-1)上升至0.75 kg·(m~3·d)~(-1)左右,说明接种成熟的亚硝化生物膜和厌氧氨氧化颗粒污泥可达到快速启动的效果;在酒精废水处理的研究中表明,酒精废水对PN-ANAMMOX反应器的影响主要是由其中可生物降解的TOC导致,短期内可生物降解TOC的加入,ANAMMOX反应区首先受到影响;酒精废水中100 mg·L~(-1)可生物降解TOC浓度可以使总氮去除速率由0.75 kg·(m~3·d)~(-1)降低至0.25 kg·(m~3·d)~(-1)左右,降低约66%,这种抑制是可以恢复的;采用不同浓度梯度酒精废水驯化PN-ANAMMOX反应器内功能菌群,随着进水浓度梯度的增加,总氮去除速率均出现了先下降再上升的趋势,通过延长HRT和适当提高PN阶段的溶解氧的方式,有利于反应器整体脱氮效能的提高,完全以酒精废水作为进水时,总氮去除速率稳定在0.65 kg·(m~3·d)~(-1)左右,脱氮效果较好,说明一体式PN-ANAMMOX可用于回用酒精废水的处理. 相似文献
145.
6∶2氟调醇(6∶2 FTOH)是一种多氟烷基物质,近年被广泛用于工业和消费品中,对环境有潜在威胁,但目前关于6∶2FTOH及其降解产物对沉积物中微生物群落结构的影响还不清楚.本研究的目的是通过基因分析方法探索6∶2 FTOH生物降解对表层沉积物中细菌群落结构的影响.从天津海河采集表层沉积物和河水,在实验室进行微宇宙实验,通过LC-MS/MS测定6∶2 FTOH及其降解产物的浓度,通过变性梯度凝胶电泳和高通量测序分析细菌的群落结构.结果表明,6∶2 FTOH在微生物的作用下可发生降解(半衰期小于3 d),生成6∶2 FTCA、6∶2 FTUCA等中间产物和5∶2 FT Ketone、5∶2 s FTOH、PFHx A、PFPe A、PFBA、5∶3 Acid等稳定产物,该过程对沉积物细菌群落结构产生明显影响,引起细菌群落丰富度和多样性的变化.在6∶2 FTOH降解的不同阶段,细菌的变化和优势菌群略有不同.根据100 d的实验结果,从门的分类水平看,6∶2 FTOH生物降解引起绿弯菌门丰度大幅上升(+24.8%)、变形菌门和厚壁菌门丰度大幅下降(-17.8%和-15.9%).从纲的分类水平看,6∶2 FTOH生物降解引起丰度上升较大的有厌氧绳菌纲(+19.6%)和δ-变形菌纲(+4.3%),引起丰度下降较大的有ε-变形菌纲(-20.0%)、梭菌纲(-10.1%)、芽孢杆菌纲(-5.8%)和γ-变形菌纲(-4.2%).从属的分类水平看,6∶2 FTOH生物降解引起丰度上升较大的有Anaerolineaceae_uncultured(+19.1%)和硫碱球菌属(+13.3%),引起丰度下降较大的有弧菌属(-14.1%)、硫单胞菌属(-13.2%)、芽孢杆菌属(-5.1%)、Sulfurovum(-4.2%)和Fusibacter(-4.1%).这些结果有助于预测环境中细菌对多氟烷基物质污染的响应及筛选可降解多氟烷基物质的细菌. 相似文献
146.
147.
利用磷钼酸铵、聚乙烯醇和正硅酸四乙酯合成一种新型复合材料(AMP-PVA),运用扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)、X射线光电子能谱(XPS)和热重分析仪(TG-DSC)等对AMP-PVA进行结构和形貌表征.同时,探究了不同初始浓度、pH、时间等因素对AMP-PVA特异性吸附Cs+性能的影响,并结合等温吸附曲线、吸附动力学等对AMP-PVA的吸附机制进行探讨.结果表明,AMP-PVA可在pH=2~11范围内使用,耐酸性能良好,且在35 ℃、pH=7.7、初始Cs+浓度为200 mg·L-1的条件下达到最大吸附量109.56 mg·g-1;吸附过程以自发的、吸热的、可持续的化学吸附为主,符合Freundlich等温吸附模型和准二级动力学模型,并伴随着内扩散和Boyd模型的特征;AMP-PVA主要作用机制为Cs+与AMP中的NH4+发生离子交换. 相似文献
148.
149.
使用氯球作为前驱体与二乙烯三胺在回流条件下反应合成一种胺基树脂,对胺基树脂的特征进行了表征,并研究了胺基树脂对水中的壬基酚聚氧乙烯醚(NP10EO)的吸附行为.树脂的红外、元素分析及比表面积与平均孔径分析结果表明,胺基官能团成功地嫁接到树脂表面,胺基浓度为5.6 mmol/g,且胺基树脂的比表面积较氯球有较大增加.胺基树脂对NP10EO的吸附等温线表明,温度的升高有利于吸附,在35 ℃下胺基树脂对NP10EO的最高平衡吸附量达58.36 mg/g.采用Langmuir方程和Freundlich方程用于吸附等温线的解释,结果表明,吸附等温线更加符合Langmuir模型,相关系数(R2)均大于0.98. NP10EO在胺基树脂上的吸附符合准二级动力学方程,初始ρ(NP10EO)越低达到吸附平衡所需时间越短,初始ρ(NP10EO)为9.41 mg/L的溶液能在2 h内达到吸附平衡. 相似文献
150.