首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   713篇
  免费   83篇
  国内免费   50篇
安全科学   3篇
废物处理   2篇
环保管理   92篇
综合类   160篇
基础理论   458篇
环境理论   1篇
污染及防治   19篇
评价与监测   47篇
社会与环境   63篇
灾害及防治   1篇
  2024年   1篇
  2023年   33篇
  2022年   32篇
  2021年   40篇
  2020年   40篇
  2019年   26篇
  2018年   21篇
  2017年   24篇
  2016年   34篇
  2015年   31篇
  2014年   26篇
  2013年   40篇
  2012年   35篇
  2011年   36篇
  2010年   43篇
  2009年   47篇
  2008年   32篇
  2007年   37篇
  2006年   33篇
  2005年   55篇
  2004年   38篇
  2003年   26篇
  2002年   22篇
  2001年   10篇
  2000年   17篇
  1999年   14篇
  1998年   21篇
  1997年   9篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   1篇
  1988年   1篇
排序方式: 共有846条查询结果,搜索用时 15 毫秒
761.
Mapping opportunities and challenges for rewilding in Europe   总被引:1,自引:0,他引:1       下载免费PDF全文
Farmland abandonment takes place across the world due to socio‐economic and ecological drivers. In Europe agricultural and environmental policies aim to prevent abandonment and halt ecological succession. Ecological rewilding has been recently proposed as an alternative strategy. We developed a framework to assess opportunities for rewilding across different dimensions of wilderness in Europe. We mapped artificial light, human accessibility based on transport infrastructure, proportion of harvested primary productivity (i.e., ecosystem productivity appropriated by humans through agriculture or forestry), and deviation from potential natural vegetation in areas projected to be abandoned by 2040. At the continental level, the levels of artificial light were low and the deviation from potential natural vegetation was high in areas of abandonment. The relative importance of wilderness metrics differed regionally and was strongly connected to local environmental and socio‐economic contexts. Large areas of projected abandonment were often located in or around Natura 2000 sites. Based on these results, we argue that management should be tailored to restore the aspects of wilderness that are lacking in each region. There are many remaining challenges regarding biodiversity in Europe, but megafauna species are already recovering. To further potentiate large‐scale rewilding, Natura 2000 management would need to incorporate rewilding approaches. Our framework can be applied to assessing rewilding opportunities and challenges in other world regions, and our results could guide redirection of subsidies to manage social‐ecological systems.  相似文献   
762.
Attitudes have been a commonly used psychological measure of program effectiveness in conservation social science research. The major limitation of this approach is that attitudes do not always translate into behavior and therefore may not provide an accurate assessment of program success. Given that achieving conservation goals generally relies on understanding and changing human behavior, we argue for the need to assess behavior rather than attitudes as an indicator of conservation outcomes. Psychological theory shows that attitudes and behavior are distinct, but related, concepts. Measuring conservation behaviors involves identifying the target behavior or behaviors and the optimal time to measure and then selecting the most appropriate method of measurement (i.e., direct observation, objective indicators, self-reported behavior, and behavioral intentions) that considers the strengths and weaknesses of each approach. We call for conservation programs to focus on influencing behavior rather than attitudes alone and encourage conservation practitioners and researchers to collect high-quality behavioral data to more effectively inform policy and programs.  相似文献   
763.
Monitoring non-native plant richness is important for biodiversity conservation and scientific research. The species-area model (SA model) has been used frequently to estimate the total species richness within a region. However, the conventional SA model may not provide robust estimations of non-native plant richness because the ecological processes associated with the accumulation of exotic and native plants may differ. Because roads strongly dictate the distributions of exotic plants, we propose a species-accumulation model along roads (SR model), rather than an SA model, to estimate the non-native plant richness within a region. Using 270 simulated data sets, we compared the differences in performance between the SR and SA models. A decision tree based on prediction accuracy was created to guide model application, which was validated using field data from 3 national nature reserves in 3 different provinces in China. The SR model significantly outperformed the SA model when non-native species were restricted to the roadsides and the proportion of uncommon exotic species was small. More importantly, the SR model accurately estimated the non-native plant richness in all field sites with an error of <1 species per site. We believe our new model meets the practical need to efficiently and robustly estimate non-native plant richness, which may facilitate effective biodiversity conservations and promote research on non-native plant invasion and vegetation dynamics.  相似文献   
764.
There is a growing need to assess and monitor forest cover and its conservation status over global scales to determine human impact on ecosystems and to develop sustainability plans. Recent approaches to measure regional and global forest status and dynamics are based on remotely sensed estimates of tree cover. We argue that tree cover should not be used to assess the area of forest ecosystems because tree cover is an undefined subset of forest cover. For example, tree cover can indicate a positive trend even in the presence of deforestation, as in the case of plantations. We believe a global map of forest naturalness that accounts for the bio-ecological integrity of forest ecosystems, for example, intact forests, old-growth forest patches, rewilding forests (exploited forest landscapes undergoing long-term natural succession), and managed forests is needed for global forest assessment.  相似文献   
765.
Land use and hunting are 2 major pressures on biodiversity in the tropics. Yet, their combined impacts have not been systematically quantified at a large scale. We estimated the effects of both pressures on the distributions of 1884 tropical mammal species by integrating species’ range maps, detailed land-use maps (1992 and 2015), species-specific habitat preference data, and a hunting pressure model. We further identified areas where the combined impacts were greatest (hotspots) and least (coolspots) to determine priority areas for mitigation or prevention of the pressures. Land use was the main driver of reduced distribution of all mammal species considered. Yet, hunting pressure caused additional reductions in large-bodied species’ distributions. Together, land use and hunting reduced distributions of species by 41% (SD 30) on average (year 2015). Overlap between impacts was only 2% on average. Land use contributed more to the loss of distribution (39% on average) than hunting (4% on average). However, hunting reduced the distribution of large mammals by 29% on average; hence, large mammals lost a disproportional amount of area due to the combination of both pressures. Gran Chaco, the Atlantic Forest, and Thailand had high levels of impact across the species (hotspots of area loss). In contrast, the Amazon and Congo Basins, the Guianas, and Borneo had relatively low levels of impact (coolspots of area loss). Overall, hunting pressure and human land use increased from 1992 to 2015 and corresponding losses in distribution increased from 38% to 41% on average across the species. To effectively protect tropical mammals, conservation policies should address both pressures simultaneously because their effects are highly complementary. Our spatially detailed and species-specific results may support future national and global conservation agendas, including the design of post-2020 protected area targets and strategies.  相似文献   
766.
Recent extinctions often resulted from humans retaliating against wildlife that threatened people's interests or were perceived to threaten current or future interests. Today's subfield of human-wildlife conflict and coexistence (HWCC) grew out of an original anthropocentric concern with such real or perceived threats and then, starting in the mid-1990s, with protecting valued species from people. Recent work in ethics and law has shifted priorities toward coexistence between people and wild animals. To spur scientific progress and more effective practice, we examined 4 widespread assumptions about HWCC that need to be tested rigorously: scientists are neutral and objective about HWCC; current participatory, consensus-based decisions provide just and fair means to overcome challenges in HWCC; wildlife threats to human interests are getting worse; and wildlife damage to human interests is additive to other sources of damage. The first 2 assumptions are clearly testable, but if they are entangled can become a wicked problem and may need debunking as myths if they cannot be disentangled. Some assumptions have seldom or never been tested and those that have been tested appear dubious, yet the use of the assumptions continues in the practice and scholarship of HWCC. We call for tests of assumptions and debunking of myths in the scholarship of HWCC. Adherence to the principles of scientific integrity and application of standards of evidence can help advance our call. We also call for practitioners and interest groups to improve the constitutive process prior to decision making about wildlife. We predict these steps will hasten scientific progress toward evidence-based interventions and improve the fairness, ethics, and legality of coexistence strategies.  相似文献   
767.
Present biodiversity comprises the evolutionary heritage of Earth's epochs. Lineages from particular epochs are often found in particular habitats, but whether current habitat decline threatens the heritage from particular epochs is unknown. We hypothesized that within a given region, humans threaten specifically habitats that harbor lineages from a particular geological epoch. We expect so because humans threaten environments that dominated and lineages that diversified during these epochs. We devised a new approach to quantify, per habitat type, diversification of lineages from different epochs. For Netherlands, one of the floristically and ecologically best-studied regions, we quantified the decline of habitat types and species in the past century. We defined habitat types based on vegetation classification and used existing ranking of decline of vegetation classes and species. Currently, most declining habitat types and the group of red-listed species are characterized by increased diversification of lineages dating back to Paleogene, specifically to Paleocene-Eocene and Oligocene. Among vulnerable habitat types with large representation of lineages from these epochs were sublittoral and eulittoral zones of temperate seas and 2 types of nutrient-poor, open habitats. These losses of evolutionary heritage would go unnoticed with classical measures of evolutionary diversity. Loss of heritage from Paleocene-Eocene became unrelated to decline once low competition, shade tolerance, and low proportion of non-Apiaceae were accounted for, suggesting that these variables explain the loss of heritage from Paleocene-Eocene. Losses of heritage from Oligocene were partly explained by decline of habitat types occupied by weak competitors and shade-tolerant species. Our results suggest a so-far unappreciated human threat to evolutionary heritage: habitat decline threatens descendants from particular epochs. If the trends persist into the future uncontrolled, there may be no habitats within the region for many descendants of evolutionary ancient epochs, such as Paleogene.  相似文献   
768.
Abstract:  Efficient sampling design in field studies is important for economical and statistical reasons. We compared two ways to distribute sampling effort over an area, either randomly or subjectively. We searched for red-listed saproxylic (wood-living) beetles in 30 spruce stands in boreal Sweden by sifting wood from dead trees. We randomly selected positions within each stand with a geographic positioning system and sampled the nearest dead tree (random sample). In the same stand we also sampled dead trees that, based on literature, were likely to host such species (subjective sampling). The subjective sampling (two to five samples per stand, depending on stand size) was compared with the higher, random sampling effort (fixed level of 12 samples/stand). Subjective sampling was significantly more efficient. Red-listed species were found in 36% of the subjective samples and in 16% of the random samples. Nevertheless, the larger random effort resulted in a comparable number of red-listed species per stand and in 13 detected species in total (vs. 12 species with subjective sampling). Random sampling was less efficient, but provided an unbiased alternative more suitable for statistical purposes, as needed in, for example, monitoring programs. Moreover, new species-specific knowledge can be gained through random searches.  相似文献   
769.
Abstract: Antarctic ecosystems are often considered nearly pristine because levels of anthropogenic disturbance are extremely low there. Nevertheless, over recent decades there has been a rapid increase in the number of people, researchers and tourists, visiting Antarctica. We evaluated, over 10 years, the direct impact of foot traffic on the abundance of soil animals and soil properties in Taylor Valley within the McMurdo Dry Valleys region of Antarctica. We compared soils from minimally disturbed areas with soils from nearby paths that received intermediate and high levels of human foot traffic (i.e., up to approximately 80 passes per year). The nematodes Scottnema lindsayae and Eudorylaimus sp. were the most commonly found animal species, whereas rotifers and tardigrades were found only occasionally. On the highly trampled footpaths, abundance of S. lindsayae and Eudorylaimus sp. was up to 52 and 76% lower, respectively, than in untrampled areas. Moreover, reduction in S. lindsayae abundance was more pronounced after 10 years than 2 years and in the surface soil than in the deeper soil, presumably because of the longer period of disturbance and the greater level of physical disturbance experienced by the surface soil. The ratio of living to dead Eudorylaimus sp. also declined with increased trampling intensity, which is indicative of increased mortality or reduced fecundity. At one site there was evidence that high levels of trampling reduced soil CO2 fluxes, which is related to total biological activity in the soil. Our results show that even low levels of human traffic can significantly affect soil biota in this ecosystem and may alter ecosystem processes, such as carbon cycling. Consequently, management and conservation plans for Antarctic soils should consider the high sensitivity of soil fauna to physical disturbance as human presence in this ecosystem increases.  相似文献   
770.
A method for estimating floristic diversity at the species, genus, and family levels and the taxonomic structure of the flora of protected natural areas is proposed. The method is illustrated using the example of three nature reserves located in the Northern, Middle, and Southern Urals. The dependence of the characteristics of the regional floras on their positions in the system of botanical–geographic zones, the size of the protected area, and other factors have been studied in these reserves. The proportion of endemic plants and the degree of flora synanthropization have been determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号