全文获取类型
收费全文 | 1843篇 |
免费 | 544篇 |
国内免费 | 162篇 |
专业分类
安全科学 | 48篇 |
废物处理 | 14篇 |
环保管理 | 58篇 |
综合类 | 341篇 |
基础理论 | 1912篇 |
污染及防治 | 76篇 |
评价与监测 | 46篇 |
社会与环境 | 37篇 |
灾害及防治 | 17篇 |
出版年
2024年 | 1篇 |
2023年 | 116篇 |
2022年 | 109篇 |
2021年 | 145篇 |
2020年 | 143篇 |
2019年 | 127篇 |
2018年 | 116篇 |
2017年 | 155篇 |
2016年 | 138篇 |
2015年 | 178篇 |
2014年 | 177篇 |
2013年 | 197篇 |
2012年 | 143篇 |
2011年 | 152篇 |
2010年 | 154篇 |
2009年 | 65篇 |
2008年 | 87篇 |
2007年 | 40篇 |
2006年 | 47篇 |
2005年 | 32篇 |
2004年 | 21篇 |
2003年 | 29篇 |
2002年 | 29篇 |
2001年 | 18篇 |
2000年 | 16篇 |
1999年 | 20篇 |
1998年 | 19篇 |
1997年 | 10篇 |
1996年 | 7篇 |
1995年 | 8篇 |
1994年 | 11篇 |
1993年 | 9篇 |
1992年 | 7篇 |
1991年 | 3篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1977年 | 2篇 |
1975年 | 1篇 |
排序方式: 共有2549条查询结果,搜索用时 15 毫秒
101.
Fungi are undoubtedly important for ecosystem functioning; however, they have been omitted or given scant attention in most biodiversity policy documents, management plans, and formal conservation schedules throughout the world. This oversight may be due to a general lack of awareness in the scientific community and compounded by a scarcity of mycology‐associated curricula at the tertiary level and a lack of mycologists in research institutions. Although molecular techniques advance the systematic cataloging of fungi and facilitate insights into fungal communities, the scarcity of professional mycologists in the environmental sciences hampers conservation efforts. Conversely, citizen science initiatives are making significant contributions to the mycology discipline by increasing awareness and extending the scope of fungal surveys. Future research by professional and amateur mycologists into the distribution of fungi and their function in ecosystems will help identify wider and more effective conservation goals. 相似文献
102.
Progress and challenges in consolidating the management of Amazonian protected areas and indigenous territories 下载免费PDF全文
Effective management refers to the ability of a protected area or indigenous territory to meet its objectives, particularly as they relate to the protection of biodiversity and forest cover. Effective management is achieved through a process of consolidation, which among other things requires legally protecting sites, integrating sites into land‐use planning, developing and implementing management and resource‐use plans, and securing long‐term funding to pay for recurrent costs. Effectively managing all protected areas and indigenous territories in the Amazon may be needed to avoid a deforestation tipping point beyond which regional climatic feedbacks and global climate change interact to catalyze irreversible drying and savannization of large areas. At present, protected areas and indigenous territories cover 45.5% (3.55 million km2) of the Amazon, most of the 60–70% forest cover required to maintain hydrologic and climatic function. Three independent evaluations of a long‐term large‐scale philanthropic initiative in the Amazon yielded insights into the challenges and advances toward achieving effective management of protected areas and indigenous territories. Over the life of the initiative, management of sites has improved considerably, particularly with respect to management planning and capacity building, but few sites are effectively managed and many lack sufficient long‐term financing, adequate governance, support of nongovernmental organizations, and the means to withstand economic pressures. The time and money required to complete consolidation is still poorly understood, but it is clear that philanthropic funding is critical so long as essential funding needs are not met by governments and other sources, which could be on the order of decades. Despite challenges, it is encouraging that legal protection has expanded greatly and management of sites is improving steadily. Management of protected areas in other developing countries could be informed by improvements that have occurred in Amazonian countries. 相似文献
103.
Understanding human perspectives is critical in a range of conservation contexts, for example, in overcoming conflicts or developing projects that are acceptable to relevant stakeholders. The Q methodology is a unique semiquantitative technique used to explore human perspectives. It has been applied for decades in other disciplines and recently gained traction in conservation. This paper helps researchers assess when Q is useful for a given conservation question and what its use involves. To do so, we explained the steps necessary to conduct a Q study, from the research design to the interpretation of results. We provided recommendations to minimize biases in conducting a Q study, which can affect mostly when designing the study and collecting the data. We conducted a structured literature review of 52 studies to examine in what empirical conservation contexts Q has been used. Most studies were subnational or national cases, but some also address multinational or global questions. We found that Q has been applied to 4 broad types of conservation goals: addressing conflict, devising management alternatives, understanding policy acceptability, and critically reflecting on the values that implicitly influence research and practice. Through these applications, researchers found hidden views, understood opinions in depth and discovered points of consensus that facilitated unlocking difficult disagreements. The Q methodology has a clear procedure but is also flexible, allowing researchers explore long‐term views, or views about items other than statements, such as landscape images. We also found some inconsistencies in applying and, mainly, in reporting Q studies, whereby it was not possible to fully understand how the research was conducted or why some atypical research decisions had been taken in some studies. Accordingly, we suggest a reporting checklist. 相似文献
104.
Prioritizing sites for conservation based on similarity to historical baselines and feasibility of protection 下载免费PDF全文
Traci Popejoy Charles R. Randklev Thomas M. Neeson Caryn C. Vaughn 《Conservation biology》2018,32(5):1118-1127
The concept of shifting baselines in conservation science implies advocacy for the use of historical knowledge to inform these baselines but does not address the feasibility of restoring sites to those baselines. In many regions, conservation feasibility varies among sites due to differences in resource availability, statutory power, and land‐owner participation. We used zooarchaeological records to identify a historical baseline of the freshwater mussel community's composition before Euro‐American influence at a river‐reach scale (i.e., a kilometer stretch of river that is abiotically similar) in the Leon River of central Texas (U.S.A.). We evaluated how the community reference position and the feasibility of conservation might enable identification of sites where conservation actions would preserve historically representative communities and be likely to succeed. We devised a conceptual model that incorporated community information and landscape factors to link the best conservation areas to potential cost and conservation benefits. Using fuzzy ordination, we identified modern mussel beds that were most like the historical baseline. We then quantified housing density and land use near each river reach identified to estimate feasibility of habitat restoration. Using our conceptual framework, we identified reaches of high conservation value (i.e., contain the best mussel beds) and where restoration actions would be most likely to succeed. Reaches above Lake Belton were most similar in species composition and relative abundance to zooarchaeological sites. A subset of these mussel beds occurred in locations where conservation actions appeared most feasible. Our results show how to use zooarchaeological data (biodiversity data often readily available) and estimates of conservation feasibility to inform conservation priorities at a local spatial scale. 相似文献
105.
106.
遵循可持续发展的原则,针对经济欠发达地区的水环境污染现状,提出了兴建产业化的污水处理生态工程,科学地发展污灌,既有效地改善了京杭运河(徐州段)的水环境质量,又使徐州市城市污水得以资源化利用,对促进环境与社会经济协调发展具有积极意义。 相似文献
107.
Carlos Palacín Juan C. Alonso Carlos A. Martín Javier A. Alonso 《Conservation biology》2017,31(1):106-115
Many bird populations have recently changed their migratory behavior in response to alterations of the environment. We collected data over 16 years on male Great Bustards (Otis tarda), a species showing a partial migratory pattern (sedentary and migratory birds coexisting in the same breeding groups). We conducted population counts and radio tracked 180 individuals to examine differences in survival rates between migratory and sedentary individuals and evaluate possible effects of these differences on the migratory pattern of the population. Overall, 65% of individuals migrated and 35% did not. The average distance between breeding and postbreeding areas of migrant individuals was 89.9 km, and the longest average movement of sedentary males was 3.8 km. Breeding group and migration distance had no effect on survival. However, mortality of migrants was 2.4 to 3.5 times higher than mortality of sedentary birds. For marked males, collision with power lines was the main cause of death from unnatural causes (37.6% of all deaths), and migratory birds died in collisions with power lines more frequently than sedentary birds (21.3% vs 6.3%). The percentage of sedentary individuals increased from 17% in 1997 to 45% in 2012. These results were consistent with data collected from radio‐tracked individuals: The proportion of migratory individuals decreased from 86% in 1997–1999 to 44% in 2006–2010. The observed decrease in the migratory tendency was not related to climatic changes (temperatures did not change over the study period) or improvements in habitat quality (dry cereal farmland area decreased in the main study area). Our findings suggest that human‐induced mortality during migration may be an important factor shaping the migration patterns of species inhabiting humanized landscapes. 相似文献
108.
Pasan Samarasin Brian J. Shuter Stephen I. Wright F. Helen Rodd 《Conservation biology》2017,31(1):126-135
Accurate understanding of population connectivity is important to conservation because dispersal can play an important role in population dynamics, microevolution, and assessments of extirpation risk and population rescue. Genetic methods are increasingly used to infer population connectivity because advances in technology have made them more advantageous (e.g., cost effective) relative to ecological methods. Given the reductions in wildlife population connectivity since the Industrial Revolution and more recent drastic reductions from habitat loss, it is important to know the accuracy of and biases in genetic connectivity estimators when connectivity has declined recently. Using simulated data, we investigated the accuracy and bias of 2 common estimators of migration (movement of individuals among populations) rate. We focused on the timing of the connectivity change and the magnitude of that change on the estimates of migration by using a coalescent‐based method (Migrate‐n) and a disequilibrium‐based method (BayesAss). Contrary to expectations, when historically high connectivity had declined recently: (i) both methods over‐estimated recent migration rates; (ii) the coalescent‐based method (Migrate‐n) provided better estimates of recent migration rate than the disequilibrium‐based method (BayesAss); (iii) the coalescent‐based method did not accurately reflect long‐term genetic connectivity. Overall, our results highlight the problems with comparing coalescent and disequilibrium estimates to make inferences about the effects of recent landscape change on genetic connectivity among populations. We found that contrasting these 2 estimates to make inferences about genetic‐connectivity changes over time could lead to inaccurate conclusions. 相似文献
109.
Payal Shah Mindy L. Mallory Amy W. Ando Glenn R. Guntenspergen 《Conservation biology》2017,31(2):278-289
Climate‐change induced uncertainties in future spatial patterns of conservation‐related outcomes make it difficult to implement standard conservation‐planning paradigms. A recent study translates Markowitz's risk‐diversification strategy from finance to conservation settings, enabling conservation agents to use this diversification strategy for allocating conservation and restoration investments across space to minimize the risk associated with such uncertainty. However, this method is information intensive and requires a large number of forecasts of ecological outcomes associated with possible climate‐change scenarios for carrying out fine‐resolution conservation planning. We developed a technique for iterative, spatial portfolio analysis that can be used to allocate scarce conservation resources across a desired level of subregions in a planning landscape in the absence of a sufficient number of ecological forecasts. We applied our technique to the Prairie Pothole Region in central North America. A lack of sufficient future climate information prevented attainment of the most efficient risk‐return conservation outcomes in the Prairie Pothole Region. The difference in expected conservation returns between conservation planning with limited climate‐change information and full climate‐change information was as large as 30% for the Prairie Pothole Region even when the most efficient iterative approach was used. However, our iterative approach allowed finer resolution portfolio allocation with limited climate‐change forecasts such that the best possible risk‐return combinations were obtained. With our most efficient iterative approach, the expected loss in conservation outcomes owing to limited climate‐change information could be reduced by 17% relative to other iterative approaches. 相似文献
110.
Combining geodiversity with climate and topography to account for threatened species richness 下载免费PDF全文
Understanding threatened species diversity is important for long‐term conservation planning. Geodiversity—the diversity of Earth surface materials, forms, and processes—may be a useful biodiversity surrogate for conservation and have conservation value itself. Geodiversity and species richness relationships have been demonstrated; establishing whether geodiversity relates to threatened species’ diversity and distribution pattern is a logical next step for conservation. We used 4 geodiversity variables (rock‐type and soil‐type richness, geomorphological diversity, and hydrological feature diversity) and 4 climatic and topographic variables to model threatened species diversity across 31 of Finland's national parks. We also analyzed rarity‐weighted richness (a measure of site complementarity) of threatened vascular plants, fungi, bryophytes, and all species combined. Our 1‐km2 resolution data set included 271 threatened species from 16 major taxa. We modeled threatened species richness (raw and rarity weighted) with boosted regression trees. Climatic variables, especially the annual temperature sum above 5 °C, dominated our models, which is consistent with the critical role of temperature in this boreal environment. Geodiversity added significant explanatory power. High geodiversity values were consistently associated with high threatened species richness across taxa. The combined effect of geodiversity variables was even more pronounced in the rarity‐weighted richness analyses (except for fungi) than in those for species richness. Geodiversity measures correlated most strongly with species richness (raw and rarity weighted) of threatened vascular plants and bryophytes and were weakest for molluscs, lichens, and mammals. Although simple measures of topography improve biodiversity modeling, our results suggest that geodiversity data relating to geology, landforms, and hydrology are also worth including. This reinforces recent arguments that conserving nature's stage is an important principle in conservation. 相似文献