首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   37篇
环保管理   3篇
综合类   6篇
基础理论   139篇
污染及防治   1篇
  2023年   7篇
  2022年   10篇
  2021年   6篇
  2020年   13篇
  2019年   3篇
  2018年   5篇
  2017年   12篇
  2016年   8篇
  2015年   12篇
  2014年   9篇
  2013年   13篇
  2012年   7篇
  2011年   9篇
  2010年   18篇
  2009年   3篇
  2008年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1995年   1篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
71.
Abstract: Tradable permits have been applied in many areas of environmental policy and may be a response to increasing calls for flexible conservation instruments that successfully conserve biodiversity while allowing for economic development. The idea behind applying tradable permits to conservation is that developers wishing to turn land to economic purposes, thereby destroying valuable habitat, may only do so if they submit a permit to the conservation agency showing that habitat of at least the equivalent ecological value is restored elsewhere. The developer himself does not need to carry out the restoration, but may buy a permit from a third party, thus allowing a market to emerge. Nevertheless, the application of tradable permits to biodiversity conservation is a complex issue because destroyed and restored habitats are likely to differ. There may be various trade‐offs between the ecological requirements that destroyed and restored habitats be as similar as possible, and the need for a certain level of market activity to have a functioning trading system. The success of tradable permits as an instrument for reconciling the conflicts between economic development and conservation depends on the existence of certain economic, institutional, and ecological preconditions, for example, a functioning institutional framework, sufficient expert knowledge, and adequate monitoring and enforcement mechanisms.  相似文献   
72.
Abstract: Environmental synergisms may pose the greatest threat to tropical biodiversity. Using recently updated data sets from the International Union for Conservation of Nature (IUCN) Red List, we evaluated the incidence of perceived threats to all known mammal, bird, and amphibian species in tropical forests. Vulnerable, endangered, and extinct species were collectively far more likely to be imperiled by combinations of threats than expected by chance. Among 45 possible pairwise combinations of 10 different threats, 69%, 93%, and 71% were significantly more frequent than expected for threatened mammals, birds, and amphibians, respectively, even with a stringent Bonferroni‐corrected probability value (p= 0.003). Based on this analysis, we identified five key environmental synergisms in the tropics and speculate on the existence of others. The most important involve interactions between habitat loss or alteration (from agriculture, urban sprawl, infrastructure, or logging) and other anthropogenic disturbances such as hunting, fire, exotic‐species invasions, or pollution. Climatic change and emerging pathogens also can interact with other threats. We assert that environmental synergisms are more likely the norm than the exception for threatened species and ecosystems, can vary markedly in nature among geographic regions and taxa, and may be exceedingly difficult to predict in terms of their ultimate impacts. The perils posed by environmental synergisms highlight the need for a precautionary approach to tropical biodiversity conservation.  相似文献   
73.
Minimum patch size criteria for habitat protection reflect the conservation principle that a single large (SL) patch of habitat has higher biodiversity than several small (SS) patches of the same total area (SL > SS). Nonetheless, this principle is often incorrect, and biodiversity conservation requires placing more emphasis on protection of large numbers of small patches (SS > SL). We used a global database reporting the abundances of species across hundreds of patches to assess the SL > SS principle in systems where small patches are much smaller than the typical minimum patch size criteria applied for biodiversity conservation (i.e., ∼85% of patches <100 ha). The 76 metacommunities we examined included 4401 species in 1190 patches. From each metacommunity, we resampled species–area accumulation curves to evaluate how biodiversity responded to habitat existing as a few large patches or as many small patches. Counter to the SL > SS principle and consistent with previous syntheses, species richness accumulated more rapidly when adding several small patches (45.2% SS > SL vs. 19.9% SL > SS) to reach the same cumulative area, even for the very small patches in our data set. Responses of taxa to habitat fragmentation differed, which suggests that when a given total area of habitat is to be protected, overall biodiversity conservation will be most effective if that habitat is composed of as many small patches as possible, plus a few large ones. Because minimum patch size criteria often require larger patches than the small patches we examined, our results suggest that such criteria hinder efforts to protect biodiversity.  相似文献   
74.
Wind energy development is the most recent of many pressures on upland bird communities and their habitats. Studies of birds in relation to wind energy development have focused on effects of direct mortality, but the importance of indirect effects (e.g., displacement, habitat loss) on avian community diversity and stability is increasingly being recognized. We used a control-impact study in combination with a gradient design to assess the effects of wind farms on upland bird densities and on bird species grouped by habitat association (forest and open-habitat species). We conducted 506 point count surveys at 12 wind-farm and 12 control sites in Ireland during 2 breeding seasons (2012 and 2013). Total bird densities were lower at wind farms than at control sites, and the greatest differences occurred close to turbines. Densities of forest species were significantly lower within 100 m of turbines than at greater distances, and this difference was mediated by habitat modifications associated with wind-farm development. In particular, reductions in forest cover adjacent to turbines was linked to the observed decrease in densities of forest species. Open-habitat species’ densities were lower at wind farms but were not related to distance from turbines and were negatively related to size of the wind farm. This suggests that, for these species, wind-farm effects may occur at a landscape scale. Our findings indicate that the scale and intensity of the displacement effects of wind farms on upland birds depends on bird species’ habitat associations and that the observed effects are mediated by changes in land use associated with wind-farm construction. This highlights the importance of construction effects and siting of turbines, tracks, and other infrastructure in understanding the impacts of wind farms on biodiversity.  相似文献   
75.
The impacts of land‐use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low‐intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low‐intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low‐intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land‐use classes, but only 4 species were unique to primary forests. Low‐, medium‐, and high‐intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low‐intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land‐use intensity increased, especially in high‐intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification—especially increased grazing—will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low‐intensity agricultural lands are not extensively converted to high‐intensity pastures.  相似文献   
76.
When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework can be applied across multiple spatial scales to understand and mitigate impacts of industry on wildlife. We estimated risk to Golden Eagles (Aquila chrysaetos) from wind energy development in 3 topographically distinct regions of the central Appalachian Mountains of Pennsylvania (United States) based on models of resource selection of wind facilities (n = 43) and of northbound migrating eagles (n = 30). Risk to eagles from wind energy was greatest in the Ridge and Valley region; all 24 eagles that passed through that region used the highest risk landscapes at least once during low altitude flight. In contrast, only half of the birds that entered the Allegheny Plateau region used highest risk landscapes and none did in the Allegheny Mountains. Likewise, in the Allegheny Mountains, the majority of wind turbines (56%) were situated in poor eagle habitat; thus, risk to eagles is lower there than in the Ridge and Valley, where only 1% of turbines are in poor eagle habitat. Risk within individual facilities was extremely variable; on average, facilities had 11% (SD 23; range = 0–100%) of turbines in highest risk landscapes and 26% (SD 30; range = 0–85%) of turbines in the lowest risk landscapes. Our results provide a mechanism for relocating high‐risk turbines, and they show the feasibility of this novel and highly adaptable framework for managing risk of harm to wildlife from industrial development. Evaluación del Riesgo para las Aves por el Desarrollo de Energía Eólica Industrial Mediante Modelos de Selección de Recursos Pareados.  相似文献   
77.
Limited knowledge of dispersal for most organisms hampers effective connectivity conservation in fragmented landscapes. In forest ecosystems, deadwood‐dependent organisms (i.e., saproxylics) are negatively affected by forest management and degradation globally. We reviewed empirically established dispersal ecology of saproxylic insects and fungi. We focused on direct studies (e.g., mark‐recapture, radiotelemetry), field experiments, and population genetic analyses. We found 2 somewhat opposite results. Based on direct methods and experiments, dispersal is limited to within a few kilometers, whereas genetic studies showed little genetic structure over tens of kilometers, which indicates long‐distance dispersal. The extent of direct dispersal studies and field experiments was small and thus these studies could not have detected long‐distance dispersal. Particularly for fungi, more studies at management‐relevant scales (1–10 km) are needed. Genetic researchers used outdated markers, investigated few loci, and faced the inherent difficulties of inferring dispersal from genetic population structure. Although there were systematic and species‐specific differences in dispersal ability (fungi are better dispersers than insects), it seems that for both groups colonization and establishment, not dispersal per se, are limiting their occurrence at management‐relevant scales. Because most studies were on forest landscapes in Europe, particularly the boreal region, more data are needed from nonforested landscapes in which fragmentation effects are likely to be more pronounced. Given the potential for long‐distance dispersal and the logical necessity of habitat area being a more fundamental landscape attribute than the spatial arrangement of habitat patches (i.e., connectivity sensu strict), retaining high‐quality deadwood habitat is more important for saproxylic insects and fungi than explicit connectivity conservation in many cases.  相似文献   
78.
Indigenous Peoples’ lands cover over one-quarter of Earth's surface, a significant proportion of which is still free from industrial-level human impacts. As a result, Indigenous Peoples and their lands are crucial for the long-term persistence of Earth's biodiversity and ecosystem services. Yet, information on species composition on these lands globally remains largely unknown. We conducted the first comprehensive analysis of terrestrial mammal composition across mapped Indigenous lands based on data on area of habitat (AOH) for 4460 mammal species assessed by the International Union for Conservation of Nature. We overlaid each species’ AOH on a current map of Indigenous lands and found that 2695 species (60% of assessed mammals) had ≥10% of their ranges on Indigenous Peoples’ lands and 1009 species (23%) had >50% of their ranges on these lands. For threatened species, 473 (47%) occurred on Indigenous lands with 26% having >50% of their habitat on these lands. We also found that 935 mammal species (131 categorized as threatened) had ≥ 10% of their range on Indigenous Peoples’ lands that had low human pressure. Our results show how important Indigenous Peoples’ lands are to the successful implementation of conservation and sustainable development agendas worldwide.  相似文献   
79.
For species at risk of decline or extinction in source–sink systems, sources are an obvious target for habitat protection actions. However, the way in which source habitats are identified and prioritized can reduce the effectiveness of conservation actions. Although sources and sinks are conceptually defined using both demographic and movement criteria, simplifications are often required in systems with limited data. To assess the conservation outcomes of alternative source metrics and resulting prioritizations, we simulated population dynamics and extinction risk for 3 endangered species. Using empirically based habitat population models, we linked habitat maps with measured site‐ or habitat‐specific demographic conditions, movement abilities, and behaviors. We calculated source–sink metrics over a range of periods of data collection and prioritized consistently high‐output sources for conservation. We then tested whether prioritized patches identified the habitats that most affected persistence by removing them and measuring the population response. Conservation decisions based on different source–sink metrics and durations of data collection affected species persistence. Shorter time series obscured the ability of metrics to identify influential habitats, particularly in temporally variable and slowly declining populations. Data‐rich source–sink metrics that included both demography and movement information did not always identify the habitats with the greatest influence on extinction risk. In some declining populations, patch abundance better predicted influential habitats for short‐term regional persistence. Because source–sink metrics (i.e., births minus deaths; births and immigrations minus deaths and emigration) describe net population conditions and cancel out gross population counts, they may not adequately identify influential habitats in declining populations. For many nonequilibrium populations, new metrics that maintain the counts of individual births, deaths, and movement may provide additional insight into habitats that most influence persistence.  相似文献   
80.
Despite extensive research on the effects of habitat fragmentation, the ecological mechanisms underlying colonization and extinction processes are poorly known, but knowledge of these mechanisms is essential to understanding the distribution and persistence of populations in fragmented habitats. We examined these mechanisms through multiseason occupancy models that elucidated patch-occupancy dynamics of Middle Spotted Woodpeckers (Dendrocopos medius) in northwestern Spain. The number of occupied patches was relatively stable from 2000 to 2010 (15-24% of 101 patches occupied every year) because extinction was balanced by recolonization. Larger and higher quality patches (i.e., higher density of oaks >37 cm dbh [diameter at breast height]) were more likely to be occupied. Habitat quality (i.e., density of large oaks) explained more variation in patch colonization and extinction than did patch size and connectivity, which were both weakly associated with probabilities of turnover. Patches of higher quality were more likely to be colonized than patches of lower quality. Populations in high-quality patches were less likely to become extinct. In addition, extinction in a patch was strongly associated with local population size but not with patch size, which means the latter may not be a good surrogate of population size in assessments of extinction probability. Our results suggest that habitat quality may be a primary driver of patch-occupancy dynamics and may increase the accuracy of models of population survival. We encourage comparisons of competing models that assess occupancy, colonization, and extinction probabilities in a single analytical framework (e.g., dynamic occupancy models) so as to shed light on the association of habitat quality and patch geometry with colonization and extinction processes in different settings and species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号