首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   24篇
基础理论   86篇
  2023年   5篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   8篇
  2015年   5篇
  2014年   12篇
  2013年   6篇
  2012年   4篇
  2011年   1篇
  2010年   6篇
  2009年   7篇
  2008年   8篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
31.
There are concerns that Reduced Emissions from Deforestation and forest Degradation (REDD+) may fail to deliver potential biodiversity cobenefits if it is focused on high carbon areas. We explored the spatial overlaps between carbon stocks, biodiversity, projected deforestation threats, and the location of REDD+ projects in Indonesia, a tropical country at the forefront of REDD+ development. For biodiversity, we assembled data on the distribution of terrestrial vertebrates (ranges of amphibians, mammals, birds, reptiles) and plants (species distribution models for 8 families). We then investigated congruence between different measures of biodiversity richness and carbon stocks at the national and subnational scales. Finally, we mapped active REDD+ projects and investigated the carbon density and potential biodiversity richness and modeled deforestation pressures within these forests relative to protected areas and unprotected forests. There was little internal overlap among the different hotspots (richest 10% of cells) of species richness. There was also no consistent spatial congruence between carbon stocks and the biodiversity measures: a weak negative correlation at the national scale masked highly variable and nonlinear relationships island by island. Current REDD+ projects were preferentially located in areas with higher total species richness and threatened species richness but lower carbon densities than protected areas and unprotected forests. Although a quarter of the total area of these REDD+ projects is under relatively high deforestation pressure, the majority of the REDD+ area is not. In Indonesia at least, first‐generation REDD+ projects are located where they are likely to deliver biodiversity benefits. However, if REDD+ is to deliver additional gains for climate and biodiversity, projects will need to focus on forests with the highest threat to deforestation, which will have cost implications for future REDD+ implementation.  相似文献   
32.
The giant panda attracts disproportionate conservation resources. How well does this emphasis protect other endemic species? Detailed data on geographical ranges are not available for plants or invertebrates, so we restrict our analyses to 3 vertebrate taxa: birds, mammals, and amphibians. There are gaps in their protection, and we recommend practical actions to fill them. We identified patterns of species richness, then identified which species are endemic to China, and then which, like the panda, live in forests. After refining each species' range by its known elevational range and remaining forest habitats as determined from remote sensing, we identified the top 5% richest areas as the centers of endemism. Southern mountains, especially the eastern Hengduan Mountains, were centers for all 3 taxa. Over 96% of the panda habitat overlapped the endemic centers. Thus, investing in almost any panda habitat will benefit many other endemics. Existing panda national nature reserves cover all but one of the endemic species that overlap with the panda's distribution. Of particular interest are 14 mammal, 20 bird, and 82 amphibian species that are inadequately protected. Most of these species the International Union for Conservation of Nature currently deems threatened. But 7 mammal, 3 bird, and 20 amphibian species are currently nonthreatened, yet their geographical ranges are <20,000 km2 after accounting for elevational restriction and remaining habitats. These species concentrate mainly in Sichuan, Yunnan, Nan Mountains, and Hainan. There is a high concentration in the east Daxiang and Xiaoxiang Mountains of Sichuan, where pandas are absent and where there are no national nature reserves. The others concentrate in Yunnan, Nan Mountains, and Hainan. Here, 10 prefectures might establish new protected areas or upgrade local nature reserves to national status.  相似文献   
33.
Abstract: Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500‐ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1–3 (phase 1) and 10–12 (phase 2) in 17 riparian and 9 snow‐pocket aspen plots. On each 1.5‐ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot's 150‐m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow‐pocket aspen produced extensive regeneration of new shoots ( stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium‐diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow‐pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow‐pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow‐pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic‐level response to the total removal of livestock and as substantial movement toward recovery of biological integrity.  相似文献   
34.
Conservationists need to measure human behavior to guide decisions and evaluate their impact. However, activities can be misreported and reporting accuracy may change following conservation interventions, making it hard to verify any apparent changes. Techniques for asking sensitive questions are increasingly integrated into survey designs to improve data quality, but some can be costly or hard for nonexperts to implement. We demonstrate a straightforward, low-cost approach, the bean method in which respondents give anonymous answers by adding a colored bean to a jar to denote a yes or no response. We applied the bean method to measure wild-meat hunting and trading over 2 years at a conservation-project (hunting reduction) site in Gola Forest, Liberia. We extended the technique to accommodate questions about hunting and meat-selling frequency. We compared responses given using the bean method and direct questioning for groups that did and did not participate in conservation interventions. Results from the bean method corresponded to those from direct questioning, and there was no indication of change in question sensitivity following conservation interventions. Estimates from both methods indicated that wild-meat trading decreased in project and nonproject households (from 36% to 20%) and that hunting decreased in 1 project group (38–28%). Where inconsistent answers were given (2–6% of respondents), differences were in both directions and were most likely attributable to measurement error. The bean method was quick and straightforward to administer in a low-literacy setting. We showed how it can be modified for answers of more than 2 categories and consider it a valuable tool that could be adapted for a wide range of conservation settings.  相似文献   
35.
The recognition that growing proportions of species worldwide are endangered has led to the development of comparative analyses to elucidate why some species are more prone to extinction than others. Understanding factors and patterns of species vulnerability might provide an opportunity to develop proactive conservation strategies. Such comparative analyses are of special concern at national scales because this is the scale at which most conservation initiatives take place. We applied powerful ensemble learning models to test for biological correlates of the risk of decline among the Bolivian mammals to understand species vulnerability at a national scale and to predict the population trend for poorly known species. Risk of decline was nonrandomly distributed: higher proportions of large‐sized taxa were under decline, whereas small‐sized taxa were less vulnerable. Body mass, mode of life (i.e., aquatic, terrestrial, volant), geographic range size, litter size, home range, niche specialization, and reproductive potential were strongly associated with species vulnerability. Moreover, we found interacting and nonlinear effects of key traits on the risk of decline of mammals at a national scale. Our model predicted 35 data‐deficient species in decline on the basis of their biological vulnerability, which should receive more attention in order to prevent their decline. Our results highlight the relevance of comparative analysis at relatively narrow geographical scales, reveal previously unknown factors related to species vulnerability, and offer species‐by‐species outcomes that can be used to identify targets for conservation, especially for insufficiently known species. Predección y Definición de Prioridades de Conservación para Mamíferos de Bolivia con Base en Correlaciones Biológicas del Riesgo de Declinación  相似文献   
36.
Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection‐prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate‐warming stress. Fisiología Termal, Enfermedades y Disminuciones de Anfibios en las Laderas Orientales de los Andes  相似文献   
37.
Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation‐induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1–139 ha in size across a 1800 km2 region) provided bird assemblage data which were coupled with prior knowledge of bird species’ particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species’ responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed‐dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed‐dispersing birds, whether or not they are physically connected by vegetation. Respuestas de Aves Dispersoras de Semillas al Incremento de Selvas en el Paisaje Alrededor de Fragmentos  相似文献   
38.
Biodiversity offset schemes are globally popular policy tools for balancing the competing demands of conservation and development. Trading currencies for losses and gains in biodiversity value at development and credit sites are usually based on several vegetation attributes combined to yield a simple score (multimetric), but the score is rarely validated prior to implementation. Inaccurate biodiversity trading currencies are likely to accelerate global biodiversity loss through unrepresentative trades of losses and gains. We tested a model vegetation multimetric (i.e., vegetation structural and compositional attributes) typical of offset trading currencies to determine whether it represented measurable components of compositional and functional biodiversity. Study sites were located in remnant patches of a critically endangered ecological community in western Sydney, Australia, an area representative of global conflicts between conservation and expanding urban development. We sampled ant fauna composition with pitfall traps and enumerated removal by ants of native plant seeds from artificial seed containers (seed depots). Ants are an excellent model taxon because they are strongly associated with habitat complexity, respond rapidly to environmental change, and are functionally important at many trophic levels. The vegetation multimetric did not predict differences in ant community composition or seed removal, despite underlying assumptions that biodiversity trading currencies used in offset schemes represent all components of a site's biodiversity value. This suggests that vegetation multimetrics are inadequate surrogates for total biodiversity value. These findings highlight the urgent need to refine existing offsetting multimetrics to ensure they meet underlying assumptions of surrogacy. Despite the best intentions, offset schemes will never achieve their goal of no net loss of biodiversity values if trades are based on metrics unrepresentative of total biodiversity.  相似文献   
39.
The cascading effects of biodiversity loss on ecosystem functioning of forests have become more apparent. However, how edge effects shape these processes has yet to be established. We assessed how edge effects alter arthropod populations and the strength of any resultant trophic cascades on herbivory rate in tropical forests of Brazil. We established 7 paired forest edge and interior sites. Each site had a vertebrate-exclosure, procedural (exclosure framework with open walls), and control plot (total 42 plots). Forest patches were surrounded by pasture. Understory arthropods and leaf damage were sampled every 4 weeks for 11 months. We used path analysis to determine the strength of trophic cascades in the interior and edge sites. In forest interior exclosures, abundance of predaceous and herbivorous arthropods increased by 326% and 180%, respectively, compared with control plots, and there were significant cascading effects on herbivory. Edge-dwelling invertebrates responded weakly to exclusion and there was no evidence of trophic cascade. Our results suggest that the vertebrate community at forest edges controls invertebrate densities to a lesser extent than it does in the interior. Edge areas can support vertebrate communities with a smaller contingent of insectivores. This allows arthropods to flourish and indirectly accounts for higher levels of plant damage at these sites. Increased herbivory rates may have important consequences for floristic community composition and primary productivity, as well as cascading effects on nutrient cycling. By interspersing natural forest patches with agroforests, instead of pasture, abiotic edge effects can be softened and prevented from penetrating deep into the forest. This would ensure a greater proportion of forest remains habitable for sensitive species and could help retain ecosystem functions in edge zones.  相似文献   
40.
The loss of forest is a leading cause of species extinction, and reforestation is 1 of 2 established interventions for reversing this loss. However, the role of reforestation for biodiversity conservation remains debated, and lacking is an assessment of the potential contribution that reforestation could make to biodiversity conservation globally. We conducted a spatial analysis of overlap between 1,550 forest-obligate threatened species’ ranges and land that could be reforested after accounting for socioeconomic and ecological constraints. Reforestation on at least 43% (∼369 million ha) of reforestable area was predicted to potentially benefit threatened vertebrates. This is approximately 15% of the total area where threatened vertebrates occur. The greatest opportunities for conserving threatened vertebrate species are in the tropics, particularly Brazil and Indonesia. Although reforestation is not a substitute for forest conservation, and most of the area containing threatened vertebrates remains forested, our results highlight the need for global conservation strategies to recognize the potentially significant contribution that reforestation could make to biodiversity conservation. If implemented, reforestation of ∼369 million ha would also contribute substantially to climate-change mitigation, offering a way to achieve multiple sustainability commitments at once. Countries must now work to overcome key barriers (e.g., unclear revenue streams, high transaction costs) to investment in reforestation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号