In our today's societies, many dangerous chemicals are produced and transported. Due to the vast use of chemicals, more chemical accidents are taking place with huge losses. In this study a city hazardous gas monitoring network was designed to detect the dispersion of toxic and combustible gases in the primary stages. The network could cover hazardous chemical facilities, important hazardous chemical routes, warehouses and special locations which may be the targets of terrorist attacks. The network is consisted of several local networks and a central control panel complex. Each local network has a local control panel in the center and many detectors and sounders around it at distances less than 3000 m that communicate with the local control panels wirelessly. In each location there are two types of gas detectors, toxic and combustible, and a sounder which are equipped with a wireless, radio frequency modem allowing the units to communicate readings and other information on a real-time basis with a remotely located local control panel. High sensitive Photo Ionization Detectors, PIDs, are used to provide fast and low-level on-site screening for chemicals contamination. Combustible gas detectors are the second choice to sense the combustible gas and verify the readings of PIDs in this regard. The central panel consists of several connected control panels work uniquely helping a computer set and the appropriate software and communicate with local control panels via telephone lines. All of the network components are shown on the monitor of central panel with special symbols by geographical information system program. The system is fully addressable so that the high level detection of a detector produces a blinking color double-circle around its symbol in GIS plan. In case of high level gas detection, a team of experts who are fully equipped with different portable detectors depart to the site to test the field to identify the chemicals. All readings of detectors are saved in a data bank and then analyzed to find any chemicals spills and leakages. The network was simulated by a special program so that the components of local networks and the central panel are shown in separate windows. By clicking on one detector on environmental window the formerly designed responses will be activated in central panel window. 相似文献
The Bhopal Gas Leak, India 1984 is the largest chemical industrial accident ever. Haddon's and Berger's models for injury analysis have been tested, together with the project planning tool Logical Framework Approach (LFA).
The three models provide the same main message: That irrespectively of the direct cause to the leakage, it is only two parties that are responsible for the magnitude of the disaster: Union Carbide Corporation and the Governments of India and Madhya Pradesh. The models give somewhat different images of the process of the accident.
Models developed for analysis of injuries can be used for analysing a complicated mega accident like the Bhopal gas leak, although different models might stress different aspects. 相似文献
Bhopal Gas Tragedy was the worst industrial accident in the world where several thousand persons lost their lives. It occurred at the Union Carbide plant located inside the city of Bhopal and close to the railway station, at midnight of December 2-3, 1984 due to the leakage of MIC gas which took the local sleeping and floating population unawares.
This paper describes the experience of a transit passenger who reached the Bhopal Railway Station by train at about the same time when the deadly gas leakage occurred. 相似文献