全文获取类型
收费全文 | 1493篇 |
免费 | 489篇 |
国内免费 | 5篇 |
专业分类
安全科学 | 6篇 |
废物处理 | 8篇 |
环保管理 | 16篇 |
综合类 | 40篇 |
基础理论 | 1874篇 |
污染及防治 | 20篇 |
评价与监测 | 6篇 |
社会与环境 | 14篇 |
灾害及防治 | 3篇 |
出版年
2024年 | 104篇 |
2023年 | 107篇 |
2022年 | 98篇 |
2021年 | 130篇 |
2020年 | 133篇 |
2019年 | 117篇 |
2018年 | 94篇 |
2017年 | 133篇 |
2016年 | 120篇 |
2015年 | 147篇 |
2014年 | 158篇 |
2013年 | 136篇 |
2012年 | 102篇 |
2011年 | 109篇 |
2010年 | 134篇 |
2009年 | 32篇 |
2008年 | 50篇 |
2007年 | 5篇 |
2006年 | 7篇 |
2005年 | 8篇 |
2004年 | 4篇 |
2003年 | 8篇 |
2002年 | 11篇 |
2001年 | 7篇 |
2000年 | 4篇 |
1999年 | 4篇 |
1998年 | 6篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1990年 | 2篇 |
1988年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1975年 | 1篇 |
排序方式: 共有1987条查询结果,搜索用时 15 毫秒
71.
It is widely accepted that the main driver of the observed decline in biological diversity is increasing human pressure on Earth's ecosystems. However, the spatial patterns of change in human pressure and their relation to conservation efforts are less well known. We developed a spatially and temporally explicit map of global change in human pressure over 2 decades between 1990 and 2010 at a resolution of 10 km2. We evaluated 22 spatial data sets representing different components of human pressure and used them to compile a temporal human pressure index (THPI) based on 3 data sets: human population density, land transformation, and electrical power infrastructure. We investigated how the THPI within protected areas was correlated to International Union for Conservation of Nature (IUCN) management categories and the human development index (HDI) and how the THPI was correlated to cumulative pressure on the basis of the original human footprint index. Since the early 1990s, human pressure increased 64% of the terrestrial areas; the largest increases were in Southeast Asia. Protected areas also exhibited overall increases in human pressure, the degree of which varied with location and IUCN management category. Only wilderness areas and natural monuments (management categories Ib and III) exhibited decreases in pressure. Protected areas not assigned any category exhibited the greatest increases. High HDI values correlated with greater reductions in pressure across protected areas, while increasing age of the protected area correlated with increases in pressure. Our analysis is an initial step toward mapping changes in human pressure on the natural world over time. That only 3 data sets could be included in our spatio‐temporal global pressure map highlights the challenge to measuring pressure changes over time. Mapeo del Cambio en la Presión Humana Global en Tierra y Dentro de Áreas Protegidas 相似文献
72.
TERRA R. KELLY JESSE GRANTHAM DANIEL GEORGE ALACIA WELCH JOSEPH BRANDT L. JOSEPH BURNETT KELLY J. SORENSON MATTHEW JOHNSON ROBERT POPPENGA DAVID MOEN JAMES RASICO JAMES W. RIVERS CARIE BATTISTONE CHRISTINE K. JOHNSON 《Conservation biology》2014,28(6):1721-1730
Large‐scale poisoning events are common to scavenging bird species that forage communally, many of which are in decline. To reduce the threat of poisoning and compensate for other persistent threats, management, including supplemental feeding, is ongoing for many reintroduced and endangered vulture populations. Through a longitudinal study of lead exposure in California condors (Gymnogyps californianus), we illustrate the conservation challenges inherent in reintroduction of an endangered species to the wild when pervasive threats have not been eliminated. We evaluated population‐wide patterns in blood lead levels from 1997 to 2011 and assessed a broad range of putative demographic, behavioral, and environmental risk factors for elevated lead exposure among reintroduced California condors in California (United States). We also assessed the effectiveness of lead ammunition regulations within the condor's range in California by comparing condor blood lead levels before and after implementation of the regulations. Lead exposure was a pervasive threat to California condors despite recent regulations limiting lead ammunition use. In addition, condor lead levels significantly increased as age and independence from intensive management increased, including increasing time spent away from managed release sites, and decreasing reliance on food provisions. Greater independence among an increasing number of reintroduced condors has therefore elevated the population's risk of lead exposure and limited the effectiveness of lead reduction efforts to date. Our findings highlight the challenges of restoring endangered vulture populations as they mature and become less reliant on management actions necessary to compensate for persistent threats. Patrones Espaciotemporales y Factores de Riesgo por Exposición a Plomo en Cóndores de California Durante 15 Años de Reintroducción 相似文献
73.
Despite several decades of research on the effects of fragmentation and habitat change on biodiversity, there remain strong biases in the geographical regions and taxonomic species studied. The knowledge gaps resulting from these biases are of particular concern if the forests most threatened with modification are also those for which the effects of such change are most poorly understood. To quantify the nature and magnitude of such biases, we conducted a systematic review of the published literature on forest fragmentation in the tropics for the period 1980–2012. Studies included focused on any type of response of single species, communities, or assemblages of any taxonomic group to tropical forest fragmentation and on fragmentation‐related changes to forests. Of the 853 studies we found in the SCOPUS database, 64% were conducted in the Neotropics, 13% in Asia, 10% in the Afrotropics, and 5% in Australasia. Thus, although the Afrotropics is subject to the highest rates of deforestation globally, it was the most disproportionately poorly studied biome. Significant taxonomic biases were identified. Of the taxonomic groups considered, herpetofauna was the least studied in the tropics, particularly in Africa. Research examining patterns of species distribution was by far the most common type (72%), and work focused on ecological processes (28%) was rare in all biomes, but particularly in the Afrotropics and for fauna. We suggest research efforts be directed toward less‐studied biogeographic regions, particularly where the threat of forest fragmentation continues to be high. Increased research investment in the Afrotropics will be important to build knowledge of threats and inform responses in a region where almost no efforts to restore its fragmented landscapes have yet begun and forest protection is arguably most tenuous. Sesgos Biogeográficos y Taxonómicos en la Investigación de la Fragmentación de Bosques Tropicales 相似文献
74.
IAN BRECKHEIMER NICK M. HADDAD WILLIAM F. MORRIS ANNE M. TRAINOR WILLIAM R. FIELDS R. TODD JOBE BRIAN R. HUDGENS AARON MOODY JEFFREY R. WALTERS 《Conservation biology》2014,28(6):1584-1593
Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species—a bird (the umbrella), a butterfly, and a frog—inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. Definición y Evaluación del Concepto de Especie Paraguas para Conservar y Restaurar la Conectividad de Paisajes 相似文献
75.
The Southern Ocean is one of the most rapidly changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically important krill and fish. Because sea ice loss is expected to be accompanied by declines in krill and fish predators, decoupling the effects of climate and anthropogenic changes on these predator populations is crucial for ecosystem‐based management of the Southern Ocean. We reviewed research published from 2007 to 2014 that incorporated very high‐resolution satellite imagery to assess distribution, abundance, and effects of climate and other anthropogenic changes on populations of predators in polar regions. Very high‐resolution imagery has been used to study 7 species of polar animals in 13 papers, many of which provide methods through which further research can be conducted. Use of very high‐resolution imagery in the Southern Ocean can provide a broader understanding of climate and anthropogenic forces on populations and inform management and conservation recommendations. We recommend that conservation biologists continue to integrate high‐resolution remote sensing into broad‐scale biodiversity and population studies in remote areas, where it can provide much needed detail. Aplicaciones de Imágenes de Muy Alta Resolución en el Estudio y Conservación de Grandes Depredadores en el Océano Antártico 相似文献
76.
The phenomenon of Batesian mimicry, where a palatable animal gains protection against predation by resembling an unpalatable model, has been a core interest of evolutionary biologists for 150 years. An extensive range of studies has focused on revealing mechanistic aspects of mimicry (shared education and generalization of predators) and the evolutionary dynamics of mimicry systems (co‐operation vs. conflict) and revealed that protective mimicry is widespread and is important for individual fitness. However, according to our knowledge, there are no case studies where mimicry theories have been applied to conservation of mimetic species. Theoretically, mimicry affects, for example, frequency dependency of predator avoidance learning and human induced mortality. We examined the case of the protected, endangered, nonvenomous smooth snake (Coronella austriaca) that mimics the nonprotected venomous adder (Vipera berus), both of which occur in the Åland archipelago, Finland. To quantify the added predation risk on smooth snakes caused by the rarity of vipers, we calculated risk estimates from experimental data. Resemblance of vipers enhances survival of smooth snakes against bird predation because many predators avoid touching venomous vipers. Mimetic resemblance is however disadvantageous against human predators, who kill venomous vipers and accidentally kill endangered, protected smooth snakes. We found that the effective population size of the adders in Åland is very low relative to its smooth snake mimic (28.93 and 41.35, respectively).Because Batesian mimicry is advantageous for the mimic only if model species exist in sufficiently high numbers, it is likely that the conservation program for smooth snakes will fail if adders continue to be destroyed. Understanding the population consequences of mimetic species may be crucial to the success of endangered species conservation. We suggest that when a Batesian mimic requires protection, conservation planners should not ignore the model species (or co‐mimic in Mullerian mimicry rings) even if it is not itself endangered. Implications of mimicry for Conservation of the endangered smooth snake 相似文献
77.
AYESHA I. T. TULLOCH VIVITSKAIA J. D. TULLOCH MEGAN C. EVANS MORENA MILLS 《Conservation biology》2014,28(6):1462-1473
Understanding the social dimensions of conservation opportunity is crucial for conservation planning in multiple‐use landscapes. However, factors that influence the feasibility of implementing conservation actions, such as the history of landscape management, and landholders’ willingness to engage are often difficult or time consuming to quantify and rarely incorporated into planning. We examined how conservation agencies could reduce costs of acquiring such data by developing predictive models of management feasibility parameterized with social and biophysical factors likely to influence landholders’ decisions to engage in management. To test the utility of our best‐supported model, we developed 4 alternative investment scenarios based on different input data for conservation planning: social data only; biological data only; potential conservation opportunity derived from modeled feasibility that incurs no social data collection costs; and existing conservation opportunity derived from feasibility data that incurred collection costs. Using spatially explicit information on biodiversity values, feasibility, and management costs, we prioritized locations in southwest Australia to control an invasive predator that is detrimental to both agriculture and natural ecosystems: the red fox (Vulpes vulpes). When social data collection costs were moderate to high, the most cost‐effective investment scenario resulted from a predictive model of feasibility. Combining empirical feasibility data with biological data was more cost‐effective for prioritizing management when social data collection costs were low (<4% of the total budget). Calls for more data to inform conservation planning should take into account the costs and benefits of collecting and using social data to ensure that limited funding for conservation is spent in the most cost‐efficient and effective manner. 相似文献
78.
Evaluation of Water Quality in the Chillán River (Central Chile) Using Physicochemical Parameters and a Modified Water Quality Index 总被引:4,自引:0,他引:4
Debels P Figueroa R Urrutia R Barra R Niell X 《Environmental monitoring and assessment》2005,110(1-3):301-322
The Chillán River in Central Chile plays a fundamental role in local society, as a source of irrigation and drinking water,
and as a sink for urban wastewater. In order to characterize the spatial and temporal variability of surface water quality
in the watershed, a Water Quality Index (WQI) was calculated from nine physicochemical parameters, periodically measured at
18 sampling sites (January–November 2000). The results indicated a good water quality in the upper and middle parts of the
watershed. Downstream of the City of Chillán, water quality conditions were critical during the dry season, mainly due to
the effects of the urban wastewater discharge. On the basis of the results from a Principal Component Analysis (PCA), modifications
were introduced into the original WQI to reduce the costs associated with its implementation. WQIDIR2 and WQIDIR, which are both based on a laboratory analysis (Chemical Oxygen Demand) and three (pH, temperature and conductivity), respectively,
four field measurements (pH, temperature, conductivity and Dissolved Oxygen), adequately reproduce the most important spatial
and temporal variations observed with the original index. They are proposed as useful tools for monitoring global water quality
trends in this and other, similar agricultural watersheds in the Chilean Central Valley. Possibilities and limitations for
the application of the used methodology to watersheds in other parts of the world are discussed. 相似文献
79.
Research priorities for conservation and natural resource management in Oceania's small‐island developing states
下载免费PDF全文

For conservation science to effectively inform management, research must focus on creating the scientific knowledge required to solve conservation problems. We identified research questions that, if answered, would increase the effectiveness of conservation and natural resource management practice and policy in Oceania's small‐island developing states. We asked conservation professionals from academia, governmental, and nongovernmental organizations across the region to propose such questions and then identify which were of high priority in an online survey. We compared the high‐priority questions with research questions identified globally and for other regions. Of 270 questions proposed by respondents, 38 were considered high priority, including: What are the highest priority areas for conservation in the face of increasing resource demand and climate change? How should marine protected areas be networked to account for connectivity and climate change? What are the most effective fisheries management policies that contribute to sustainable coral reef fisheries? High‐priority questions related to the particular challenges of undertaking conservation on small‐island developing states and the need for a research agenda that is responsive to the sociocultural context of Oceania. Research priorities for Oceania relative to elsewhere were broadly similar but differed in specific issues relevant to particular conservation contexts. These differences emphasize the importance of involving local practitioners in the identification of research priorities. Priorities were reasonably well aligned among sectoral groups. Only a few questions were widely considered answered, which may indicate a smaller‐than‐expected knowledge‐action gap. We believe these questions can be used to strengthen research collaborations between scientists and practitioners working to further conservation and natural resource management in this region. 相似文献
80.
Monitoring,imperfect detection,and risk optimization of a Tasmanian devil insurance population
下载免费PDF全文

Tracy M. Rout Christopher M. Baker Stewart Huxtable Brendan A. Wintle 《Conservation biology》2018,32(2):267-275
Most species are imperfectly detected during biological surveys, which creates uncertainty around their abundance or presence at a given location. Decision makers managing threatened or pest species are regularly faced with this uncertainty. Wildlife diseases can drive species to extinction; thus, managing species with disease is an important part of conservation. Devil facial tumor disease (DFTD) is one such disease that led to the listing of the Tasmanian devil (Sarcophilus harrisii) as endangered. Managers aim to maintain devils in the wild by establishing disease‐free insurance populations at isolated sites. Often a resident DFTD‐affected population must first be removed. In a successful collaboration between decision scientists and wildlife managers, we used an accessible population model to inform monitoring decisions and facilitate the establishment of an insurance population of devils on Forestier Peninsula. We used a Bayesian catch‐effort model to estimate population size of a diseased population from removal and camera trap data. We also analyzed the costs and benefits of declaring the area disease‐free prior to reintroduction and establishment of a healthy insurance population. After the monitoring session in May–June 2015, the probability that all devils had been successfully removed was close to 1, even when we accounted for a possible introduction of a devil to the site. Given this high probability and the baseline cost of declaring population absence prematurely, we found it was not cost‐effective to carry out any additional monitoring before introducing the insurance population. Considering these results within the broader context of Tasmanian devil management, managers ultimately decided to implement an additional monitoring session before the introduction. This was a conservative decision that accounted for uncertainty in model estimates and for the broader nonmonetary costs of mistakenly declaring the area disease‐free. 相似文献