首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   719篇
  免费   90篇
  国内免费   454篇
安全科学   17篇
废物处理   25篇
环保管理   26篇
综合类   663篇
基础理论   216篇
污染及防治   198篇
评价与监测   106篇
社会与环境   12篇
  2024年   2篇
  2023年   25篇
  2022年   31篇
  2021年   35篇
  2020年   35篇
  2019年   58篇
  2018年   35篇
  2017年   38篇
  2016年   52篇
  2015年   55篇
  2014年   48篇
  2013年   82篇
  2012年   92篇
  2011年   86篇
  2010年   64篇
  2009年   76篇
  2008年   66篇
  2007年   61篇
  2006年   49篇
  2005年   47篇
  2004年   34篇
  2003年   36篇
  2002年   19篇
  2001年   28篇
  2000年   21篇
  1999年   22篇
  1998年   9篇
  1997年   12篇
  1996年   14篇
  1995年   4篇
  1994年   9篇
  1993年   6篇
  1991年   7篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1979年   1篇
排序方式: 共有1263条查询结果,搜索用时 187 毫秒
31.
郭雪  毕春娟  陈振楼  王薛平 《环境科学》2014,35(7):2664-2671
采用GC-MS联用技术分析了滴水湖及其水体交换区23个表层沉积物和土壤中16种多环芳烃(PAHs)的含量,探讨其分布特征及来源并对其生态风险进行评价.结果表明,滴水湖沉积物中16种PAHs含量范围是11.49~157.09 ng·g-1,平均含量为66.60 ng·g-1,湖区沉积物中PAHs含量比入湖区低,但比出湖区高.湖区外的沉积物和土壤中PAHs组成主要以中、高分子量PAHs(4环、5~6环)为主,而湖区内表层沉积物中PAHs组成则以低分子量PAHs(2~3环)和高分子量PAHs(5~6环)为主.通过特征化合物分子比值法、主成分分析及多元线性回归模型判源,表明湖区外沉积物和土壤中PAHs来源主要为燃烧源,而湖区内沉积物中PAHs来源为燃烧源和石油类产品泄漏的混合来源.生态风险评价显示,滴水湖及其水体交换区沉积物和土壤中PAHs生态风险较低.  相似文献   
32.
利用液液萃取法和气相色谱-质谱方法对佛山境内高明河水环境多环芳烃(PAHs)进行了测定,并对PAHs的分布特征与通量进行了初步研究.结果表明高明河水环境中16种优控PAHs的浓度范围在41.6~375.6 ng/l之间,从上游到下游总体呈递增的趋势,其下游浓度偏高可能与荷城街道较为密集的工业和人口分布有关.高明河水环境PAHs的总含量高于欧美一些低污染水域,但低于国内一些主要河流.高明河PAHs年通量约为333.8 kg.  相似文献   
33.
河南某市驾校地表灰尘多环芳烃组成、来源与健康风险   总被引:5,自引:4,他引:1  
采集河南省某市29所驾校的地表灰尘样品,应用气相色谱-质谱联用仪(GC-MS)测定样品中16种优控PAHs含量,用终生致癌风险增量模型(ILCR)评价灰尘PAHs不同暴露情景下(情景1、2、3分别为驾校工作5 a、10 a和20 a)的健康风险,用比值法、成分谱法和主成分因子载荷法揭示PAHs来源.结果表明,驾校灰尘ΣPAHs含量在198.21~3 400.89μg·kg-1之间,平均908.72μg·kg-1.单体PAHs含量较高的是萘、菲、蒽、荧蒽,含量最低的是二苯并[a,h]蒽,低环PAHs占ΣPAHs的55.79%,高环占44.21%.3种情景下的平均健康风险为情景3(3.71×10-7)情景2(1.85×10-7)情景1(9.27×10-8),只有一个驾校(J11)在情景3存在潜在健康风险,其他情景下均无风险.皮肤接触灰尘是最主要的PAHs暴露途径,其占总风险的64.21%;其次是误食途径,占总风险的33.04%;吸入途径可忽略不计.驾校灰尘PAHs主要来源为化石燃料不完全燃烧源和混合源,农田区驾校灰尘PAHs的柴油/天然气动力车排放源、燃煤源和汽油车排放源贡献率分别为56.44%、26.55%和17.01%,工业区驾校混合源、汽油车和炼焦/燃煤排放源贡献率分别为76.26%、22.85%和0.89%,混合区驾校燃煤源、天然气/柴油动力车排放源和汽油车排放源的贡献率分别为45.57%、45.41%和9.02%.灰尘PAHs含量及健康风险与其周边环境、前期土地利用状况密切相关.  相似文献   
34.
In September 1969, the Florida barge spilled 700,000 L of No. 2 fuel oil into the salt marsh sediments of Wild Harbor, MA. Today a substantial amount, approximately 100 kg, of moderately degraded petroleum remains within the sediment and along eroding creek banks. The ribbed mussels, Geukensia demissa, which inhabit the salt marsh creek bank, are exposed to the spilled oil. Examination of short-term exposure was done with transplantation of G. demissa from a control site, Great Sippewissett marsh, into Wild Harbor. We also examined the effects of long-term exposure with transplantation of mussels from Wild Harbor into Great Sippewissett. Both the short- and long-term exposure transplants exhibited slower growth rates, shorter mean shell lengths, lower condition indices, and decreased filtration rates. The results add new knowledge about long-term consequences of spilled oil, a dimension that should be included when assessing oil-impacted areas and developing management plans designed to restore, rehabilitate, or replace impacted areas.  相似文献   
35.
Passive sampling of pollutants in water has been gaining acceptance for environmental monitoring. Previously, an integrative passive sampler (the Chemcatcher) was developed and calibrated for the measurement of time weighted average concentrations of hydrophobic pollutants in water. Effects of physicochemical properties and environmental variables (water temperature and turbulence) on kinetic and thermodynamic parameters characterising the exchange of analytes between the sampler and water have been published. In this study, the effect of modification in sampler housing geometry on these calibration parameters was studied. The results obtained for polycyclic aromatic hydrocarbons show that reducing the depth of the cavity in the sampler body geometry increased the exchange kinetics by approximately twofold, whilst having no effect on the correlation between the uptake and offload kinetics of analytes. The use of performance reference compounds thus avoids the need for extensive re-calibration when the sampler body geometry is modified.  相似文献   
36.
Passive air sampling (PAS) was employed to study the occurrence of gaseous and particle-bound PAHs in the North Chinese Plain. The averaged concentrations of gaseous and particle-bound PAHs were 485 ± 209 ng/m3 and 267 ± 161 ng/m3, respectively. The PAHs concentrations at urban sites were generally higher than those at rural ones with ratios <1.5 in spring, summer and fall, but differences between them were not significant for the wintertime and annually averaged concentrations. This urban-rural distribution pattern was related to the PAHs emission sources. PAHs spatial variation can be partially (49%) explained by emission with a simple linear regression method. Both the gaseous and particle-bound PAHs were highest in winter and lowest in summer, with winter/summer ratios of 1.8 and 8, respectively. Emission strength was the most important factor for the seasonality.  相似文献   
37.
To evaluate the efficiency and the influence of thermal desorption on the soil organic compartment, contaminated soils from coking plant sites (NM and H) were compared to their counterparts treated with thermodesorption. The extractable organic matter, and the metal content and distribution with soil compartments were studied.In both thermodesorbed soils, PAH (polycyclic aromatic hydrocarbon) degradation exceeded 90%. However, the thermal desorption led not only to a volatilization of the organic compounds but also to the condensation of extractable organic matter.The treatments only affected the Fe and Zn distribution within the more stable fractions, whereas the organic compound degradation did not affect their mobility and availability.  相似文献   
38.
A comprehensive monitoring survey for polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine disrupting chemicals (EDCs) utilizing mussels as sentinel organisms was conducted in South and Southeast Asia as a part of the Asian Mussel Watch project. Green mussel (Perna viridis) samples collected from a total of 48 locations in India, Indonesia, Singapore, Malaysia, Thailand, Cambodia, Vietnam, and the Philippines during 1994–1999 were analyzed for PAHs, EDCs including nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA), and linear alkylbenzenes (LABs) as molecular markers for sewage. Concentrations of NP ranged from 18 to 643 ng/g-dry tissue. The highest levels of NP in Malaysia, Singapore, the Philippines, and Indonesia were comparable to those observed in Tokyo Bay. Elevated concentrations of EDCs were not observed in Vietnam and Cambodia, probably due to the lower extent of industrialization in these regions. No consistent relationship between concentrations of phenolic EDCs and LABs were found, suggesting that sewage is not a major source of EDCs. Concentrations of PAHs ranged from 11 to 1,133 ng/g-dry, which were categorized as “low to moderate” levels of pollution. The ratio of methylphenanthrenes to phenanthrene (MP/P ratio) was >1.0 in 20 out of 25 locations, indicating extensive input of petrogenic PAHs. This study provides a bench-mark for data on the distribution of anthropogenic contaminants in this region, which is essential in evaluating temporal and spatial variation and effect of future regulatory measures.  相似文献   
39.
Goals, Scope and Background It has been observed that hydrocarbon treated wastewaters still contain high COD and a number of intermediates. This suggests that the required catabolic gene pool for further degradation might be absent in the system or, that its titer value is not significant enough. By providing the desired catabolic potential, the overall efficiency of the treatment system can be improved. This study aims to demonstrate this concept by bioaugmentation of a lab-scale reactor treating refinery wastewater with a consortium having the capacity to complement the alkB genotype to the available microbial population. Methods Two reactors were set up using activated biomass collected from a refinery treatment plant and operated at a continuous mode for a period of 8 weeks. The feed to both reactors was kept constant. Crude oil was spiked regularly. One reactor was bioaugmented with a consortium previously described for crude oil spill remediation. The efficiency of the bioaugmented reactor was demonstrated by reduced COD. The changes in the microbial population over a period of time were analyzed by RAPD. Catabolic activity of the biomass in both reactors was monitored by PCR. The presence of the catabolic loci was confirmed by Southern Hybridization. Results and Discussion 52.2% removal of COD was observed in the bioaugmented reactor while only 15.1% reduction of COD was observed in the reactor without bioaugmentation. The change in microbial population can be seen from the 4th week, which also corresponds to improved catabolic activity. The presence of the bedA locus was seen in all samples, which indicates the presence of aromatic degraders, but the appearance of the alkB locus, from the 6th week onwards, which was observed only in the samples from the bioaugmented reactor. The results suggest that the gene pool of the bioaugmented reactor has catabolic loci that can degrade accumulated intermediates, thus improving the efficiency of the system. Conclusions In this study, improvement of efficiency of bioremediation was demonstrated by addition of catabolic loci that are responsible for degradation. Bioaugmentation was carried out in biomass that was collected from an ETP (effluent treatment plant) treating hydrocarbon containing wastewater to study the strategies for improvement of the treatment system. Biostimulation, only marginally improved the efficiency, when compared to bioaugmentation. The improved efficiency was demonstrated by COD removal. The presence of the alkB locus suggests the importance of a catabolic gene pool that acts on accumulated intermediates. It is well documented that straight chain aliphatics and intermediates of aromatic compounds after ring cleavage, accumulate in refinery wastewater systems, thereby hindering further degradation of the wastewater. Supplementation of a catabolic gene pool that treats the lower pathway compounds and alkanes will improve the overall efficiency. In this study, results suggest that the alkB locus can also be used to monitor the degradative mode of the activated biomass. Recommendations and Perspective . Pollution from petroleum and petroleum products around the globe are known to have grave consequences on the environment. Bioremediation, using activated sludge, is one option for the treatment of such wastes. Effluent treatment plants are usually unable to completely degrade the wastewater being treated in the biological unit (the aerator chambers). The efficiency of degradation can be improved by biostimulation and bioaugmentation. This study demonstrates the improved efficiency of a treatment system for wastewater containing hydrocarbons by bioaugmentation of a consortium that supports degradation. Further experiments on a pilot scale are recommended to assess the use of bioaugmentation on a large scale. The use of molecular tools, like DNA probes for alkB, to monitor the system also needs to be explored.  相似文献   
40.
If organic matter is burnt, the combustion of wood produces the highest amounts of polycyclic aromatic hydrocarbons (PAHs) compared with other fossil energy sources such as oil, coal, or gas. Emissions from wood combustion are increasingly of special interest due to the rising use of wood as a renewable energy source in residential heating in Europe. To the authors' knowledge, reproducible wood-specific PAH patterns in soot were identified for the first time by use of a sampling interval of only 5 min in this study. The short sampling interval was enabled by the very sensitive analytical method of gas chromatography–atmospheric pressure laser ionization–mass spectrometry (GC-APLI-MS) applied. The analysis of 40 PAH of soot from wood logs of spruce, pine, larch (softwood) and beech, birch, oak (hardwood), and wood pellets, as well as wood briquettes, showed 13.46–250.62 mg/kg for ∑40 PAH and 10.75–177.94 mg/kg for the U.S. Environmental Protection Agency PAH standard (without acenaphthylene and anthracene). Highest concentrations occurred in the samples from birch with bark, beech, and wood briquettes. Indeno[1,2,3-cd]pyrene, naphthalene, and alkylated naphthalenes were also detected. Significant concentrations of the very toxic dibenzopyrenes (up to 11.30 mg/kg) are reported. Softwood soot contained highest amounts of 2–4-ring PAH, followed by hardwood which is in accordance with the presence of highest amounts of abietic acid in softwood, a known precursor of retene and phenanthrene. PAH in soot from five spruce samples from different locations show a mean ∑40 PAH concentration of 13.46 mg/kg (n = 5, minimum 8.03, maximum 23.32 mg/kg, SD = 5.65) and exhibited a typical pattern that differed from all other wood soot samples. The distributions of alkylated naphthalenes of the spruce samples show a bell-shape distribution in contrast to the alkylated phenanthrenes/anthracenes of all samples (except the wood pellets), showing a slope distribution. The data indicate that wood-specific PAH patterns exist and under the applied conditions, spruce logs produced the least toxic soot.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号