排序方式: 共有44条查询结果,搜索用时 15 毫秒
11.
Gavin McDonald Molly Wilson Diogo Veríssimo Rebecca Twohey Michaela Clemence Dean Apistar Stephen Box Paul Butler Fel Cesar Cadiz Stuart J. Campbell Courtney Cox Micah Effron Steve Gaines Raymond Jakub Roquelito H. Mancao Pablo T. Rojas Rocky Sanchez Tirona Gabriel Vianna 《Conservation biology》2020,34(5):1176-1189
Small-scale fisheries are an important livelihood and primary protein source for coastal communities in many of the poorest regions in the world, yet many are overfished and thus require effective and scalable management solutions. Positive ecological and socioeconomic responses to management typically lag behind immediate costs borne by fishers from fishing pressure reductions necessary for fisheries recovery. These short-term costs challenge the long-term success of these interventions. However, social marketing may increase perceptions of management benefits before ecological and socioeconomic benefits are fully realized, driving new social norms and ultimately long-term sustainable behavior change. By conducting underwater visual surveys to quantify ecological conditions and by conducting household surveys with community members to quantify their perceptions of management support and socioeconomic conditions, we assessed the impact of a standardized small-scale fisheries management intervention that was implemented across 41 sites in Brazil, Indonesia, and the Philippines. The intervention combines TURF reserves (community-based territorial use rights for fishing coupled with no-take marine reserves) with locally tailored social-marketing behavior change campaigns. Leveraging data across 22 indicators and 4 survey types, along with data from 3 control sites, we found that ecological and socioeconomic impacts varied and that communities supported the intervention and were already changing their fishing practices. These results suggest that communities were developing new social norms and fishing more sustainably before long-term ecological and socioeconomic benefits of fisheries management materialized. 相似文献
12.
Megan Rothenberger Andrea Armstrong Trent Gaugler Sarah Massaro William Pfadenhauer Juliana Ventresca 《Conservation biology》2020,34(6):1560-1570
We devised a practical method for integrating information on 2 marine invasive species using 3 different approaches: standardized ecological monitoring, online-reporting databases, and surveys of anglers and crabbers. Focusing on 2 recently introduced species with different characteristics, the Asian shore crab (Hemigrapsus sanguineus) and Chinese mitten crab (Eriocheir sinensis), in the Hudson-Raritan watershed of New York and New Jersey, we used sensitivity analyses to explore the relative contribution of each information source to knowledge of species abundance and distribution. All 3 information sources contributed something unique to understanding abundance and distribution of the introduced crabs. Online and survey data on Asian shore crabs significantly affected predictions of abundance, whereas monitoring data did not. When survey data were omitted, abundance estimates were unchanged over time, but when they were included, the model predicted an increased abundance in 2012. All 3 data sets for the Asian shore crab significantly affected estimates of species coverage; surveys had the biggest influence, increasing range size by 4097.25 km2. For the catadromous Chinese mitten crab, ecological monitoring data collected in freshwater shortly after the original sighting significantly shaped model estimates for abundance and documented the establishment phase of the mitten crab in an area outside the spatial scope of the surveyed resource users. However, the survey data significantly enlarged mitten crab range-size estimates by 6498.01 km2. By demonstrating that data integration produced an image of the invasion process that would not have emerged had we used any 1 method individually, model results provide evidence for the advantages of an interdisciplinary approach. 相似文献
13.
Ruth M. Thompson Jordan Hall Chris Morrison Nicole R. Palmer David L. Roberts 《Conservation biology》2021,35(6):1747-1754
Internet-based research is increasingly important for conservation science and has wide-ranging applications and contexts, including culturomics, illegal wildlife trade, and citizen science. However, online research methods pose a range of ethical and legal challenges. Online data may be protected by copyright, database rights, or contract law. Privacy rights may also restrict the use and access of data, as well as ethical requirements from institutions. Online data have real-world meaning, and the ethical treatment of individuals and communities must not be marginalized when conducting internet-based research. As ethics frameworks originally developed for biomedical applications are inadequate for these methods, we propose that research activities involving the analysis of preexisting online data be treated analogous to offline social science methods, in particular, nondeceptive covert observation. By treating internet users and their data with respect and due consideration, conservationists can uphold the public trust needed to effectively address real-world issues. 相似文献
14.
Stefano Canessa Sarah J. Converse Matt West Nick Clemann Graeme Gillespie Michael McFadden Aimee J. Silla Kirsten M. Parris Michael A. McCarthy 《Conservation biology》2016,30(3):599-609
Ex situ conservation strategies for threatened species often require long‐term commitment and financial investment to achieve management objectives. We present a framework that considers the decision to adopt ex situ management for a target species as the end point of several linked decisions. We used a decision tree to intuitively represent the logical sequence of decision making. The first decision is to identify the specific management actions most likely to achieve the fundamental objectives of the recovery plan, with or without the use of ex‐situ populations. Once this decision has been made, one decides whether to establish an ex situ population, accounting for the probability of success in the initial phase of the recovery plan, for example, the probability of successful breeding in captivity. Approaching these decisions in the reverse order (attempting to establish an ex situ population before its purpose is clearly defined) can lead to a poor allocation of resources, because it may restrict the range of available decisions in the second stage. We applied our decision framework to the recovery program for the threatened spotted tree frog (Litoria spenceri) of southeastern Australia. Across a range of possible management actions, only those including ex situ management were expected to provide >50% probability of the species’ persistence, but these actions cost more than use of in situ alternatives only. The expected benefits of ex situ actions were predicted to be offset by additional uncertainty and stochasticity associated with establishing and maintaining ex situ populations. Naïvely implementing ex situ conservation strategies can lead to inefficient management. Our framework may help managers explicitly evaluate objectives, management options, and the probability of success prior to establishing a captive colony of any given species. 相似文献
15.
ELODIE LE CORNU JOHN N. KITTINGER J. ZACHARY KOEHN ELENA M. FINKBEINER LARRY B. CROWDER 《Conservation biology》2014,28(4):902-911
Coastal and ocean planning comprises a broad field of practice. The goals, political processes, and approaches applied to planning initiatives may vary widely. However, all planning processes ultimately require adequate information on both the biophysical and social attributes of a planning region. In coastal and ocean planning practice, there are well‐established methods to assess biophysical attributes; however, less is understood about the role and assessment of social data. We conducted the first global assessment of the incorporation of social data in coastal and ocean planning. We drew on a comprehensive review of planning initiatives and a survey of coastal and ocean practitioners. There was significantly more incorporation of social data in multiuse versus conservation‐oriented planning. Practitioners engaged a wide range of social data, including governance, economic, and cultural attributes of planning regions and human impacts data. Less attention was given to ecosystem services and social–ecological linkages, both of which could improve coastal and ocean planning practice. Although practitioners recognize the value of social data, little funding is devoted to its collection and incorporation in plans. Increased capacity and sophistication in acquiring critical social and ecological data for planning is necessary to develop plans for more resilient coastal and ocean ecosystems and communities. We suggest that improving social data monitoring, and in particular spatial social data, to complement biophysical data, is necessary for providing holistic information for decision‐support tools and other methods. Moving beyond people as impacts to people as beneficiaries, through ecosystem services assessments, holds much potential to better incorporate the tenets of ecosystem‐based management into coastal and ocean planning by providing targets for linked biodiversity conservation and human welfare outcomes. La Práctica Actual y los Prospectos Futuros para los Datos Sociales en la Planeación Costera y Oceánica 相似文献
16.
Phaedra Budy Mary M. Conner Nira L. Salant William W. Macfarlane 《Conservation biology》2015,29(4):1142-1152
Desert fishes are some of the most imperiled vertebrates worldwide due to their low economic worth and because they compete with humans for water. An ecological complex of fishes, 2 suckers (Catostomus latipinnis, Catostomus discobolus) and a chub (Gila robusta) (collectively managed as the so‐called three species) are endemic to the U.S. Colorado River Basin, are affected by multiple stressors, and have allegedly declined dramatically. We built a series of occupancy models to determine relationships between trends in occupancy, local extinction, and local colonization rates, identify potential limiting factors, and evaluate the suitability of managing the 3 species collectively. For a historical period (1889–2011), top performing models (AICc) included a positive time trend in local extinction probability and a negative trend in local colonization probability. As flood frequency decreased post‐development local extinction probability increased. By the end of the time series, 47% (95% CI 34‐61) and 15% (95% CI 6‐33) of sites remained occupied by the suckers and the chub, respectively, and models with the 2 species of sucker as one group and the chub as the other performed best. For a contemporary period (2001?2011), top performing (based on AICc) models included peak annual discharge. As peak discharge increased, local extinction probability decreased and local colonization probability increased. For the contemporary period, results of models that split all 3 species into separate groups were similar to results of models that combined the 2 suckers but not the chub. Collectively, these results confirmed that declines in these fishes were strongly associated with water development and that relative to their historic distribution all 3 species have declined dramatically. Further, the chub was distinct in that it declined the most dramatically and therefore may need to be managed separately. Our modeling approach may be useful in other situations in which targeted data are sparse and conservation status and best management approach for multiple species are uncertain. 相似文献
17.
Alexander Zizka Daniele Silvestro Pati Vitt Tiffany M. Knight 《Conservation biology》2021,35(3):897-908
International Union for Conservation of Nature (IUCN) Red List assessments are essential for prioritizing conservation needs but are resource intensive and therefore available only for a fraction of global species richness. Automated conservation assessments based on digitally available geographic occurrence records can be a rapid alternative, but it is unclear how reliable these assessments are. We conducted automated conservation assessments for 13,910 species (47.3% of the known species in the family) of the diverse and globally distributed orchid family (Orchidaceae), for which most species (13,049) were previously unassessed by IUCN. We used a novel method based on a deep neural network (IUC-NN). We identified 4,342 orchid species (31.2% of the evaluated species) as possibly threatened with extinction (equivalent to IUCN categories critically endangered [CR], endangered [EN], or vulnerable [VU]) and Madagascar, East Africa, Southeast Asia, and several oceanic islands as priority areas for orchid conservation. Orchidaceae provided a model with which to test the sensitivity of automated assessment methods to problems with data availability, data quality, and geographic sampling bias. The IUC-NN identified possibly threatened species with an accuracy of 84.3%, with significantly lower geographic evaluation bias relative to the IUCN Red List and was robust even when data availability was low and there were geographic errors in the input data. Overall, our results demonstrate that automated assessments have an important role to play in identifying species at the greatest risk of extinction. 相似文献
18.
Rank aggregation of local expert knowledge for conservation planning of the critically endangered saola
下载免费PDF全文

There has been much recent interest in using local knowledge and expert opinion for conservation planning, particularly for hard‐to‐detect species. Although it is possible to ask for direct estimation of quantities such as population size, relative abundance is easier to estimate. However, an expert's knowledge is often geographically restricted relative to the area of interest. Combining (or aggregating) experts’ assessments of relative abundance is difficult when each expert only knows a part of the area of interest. We used Google's PageRank algorithm to aggregate ranked abundance scores elicited from local experts through a rapid rural‐appraisal method. We applied this technique to conservation planning for the saola (Pseudoryx nghetinhensis), a poorly known bovid. Near a priority landscape for the species, composed of 3 contiguous protected areas, we asked groups of local people to indicate relative abundances of saola and other species by placing beans on community maps. For each village, we used this information to rank areas within the knowledge area of that village for saola abundance. We used simulations to compare alternative methods to aggregate the rankings from the different villages. The best‐performing method was then used to produce a single map of relative abundance across the entire landscape, an area larger than that known to any one village. This map has informed prioritization of surveys and conservation action in the continued absence of direct information about the saola. 相似文献
19.
Enrico Di Minin Christoph Fink Anna Hausmann Jens Kremer Ritwik Kulkarni 《Conservation biology》2021,35(2):437-446
Social media data are being increasingly used in conservation science to study human–nature interactions. User-generated content, such as images, video, text, and audio, and the associated metadata can be used to assess such interactions. A number of social media platforms provide free access to user-generated social media content. However, similar to any research involving people, scientific investigations based on social media data require compliance with highest standards of data privacy and data protection, even when data are publicly available. Should social media data be misused, the risks to individual users' privacy and well-being can be substantial. We investigated the legal basis for using social media data while ensuring data subjects’ rights through a case study based on the European Union's General Data Protection Regulation. The risks associated with using social media data in research include accidental and purposeful misidentification that has the potential to cause psychological or physical harm to an identified person. To collect, store, protect, share, and manage social media data in a way that prevents potential risks to users involved, one should minimize data, anonymize data, and follow strict data management procedure. Risk-based approaches, such as a data privacy impact assessment, can be used to identify and minimize privacy risks to social media users, to demonstrate accountability and to comply with data protection legislation. We recommend that conservation scientists carefully consider our recommendations in devising their research objectives so as to facilitate responsible use of social media data in conservation science research, for example, in conservation culturomics and investigations of illegal wildlife trade online. 相似文献
20.
Dominique G. Roche Rose E. O'Dea Kecia A. Kerr Trina Rytwinski Richard Schuster Vivian M. Nguyen Nathan Young Joseph R. Bennett Steven J. Cooke 《Conservation biology》2022,36(3):e13835
The knowledge-action gap in conservation science and practice occurs when research outputs do not result in actions to protect or restore biodiversity. Among the diverse and complex reasons for this gap, three barriers are fundamental: knowledge is often unavailable to practitioners and challenging to interpret or difficult to use or both. Problems of availability, interpretability, and useability are solvable with open science practices. We considered the benefits and challenges of three open science practices for use by conservation scientists and practitioners. First, open access publishing makes the scientific literature available to all. Second, open materials (detailed methods, data, code, and software) increase the transparency and use of research findings. Third, open education resources allow conservation scientists and practitioners to acquire the skills needed to use research outputs. The long-term adoption of open science practices would help researchers and practitioners achieve conservation goals more quickly and efficiently and reduce inequities in information sharing. However, short-term costs for individual researchers (insufficient institutional incentives to engage in open science and knowledge mobilization) remain a challenge. We caution against a passive approach to sharing that simply involves making information available. We advocate a proactive stance toward transparency, communication, collaboration, and capacity building that involves seeking out and engaging with potential users to maximize the environmental and societal impact of conservation science. 相似文献