首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   10篇
  国内免费   4篇
安全科学   1篇
环保管理   5篇
综合类   12篇
基础理论   83篇
污染及防治   6篇
评价与监测   5篇
社会与环境   4篇
  2023年   4篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2011年   7篇
  2010年   12篇
  2009年   11篇
  2008年   8篇
  2007年   9篇
  2006年   8篇
  2005年   9篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2000年   4篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有116条查询结果,搜索用时 826 毫秒
51.
Environmental changes strongly impact the distribution of species and subsequently the composition of species assemblages. Although most community ecology studies represent temporal snap shots, long‐term observations are rather rare. However, only such time series allow the identification of species composition shifts over several decades or even centuries. We analyzed changes in the species composition of a southeastern German butterfly and burnet moth community over nearly 2 centuries (1840–2013). We classified all species observed over this period according to their ecological tolerance, thereby assessing their degree of habitat specialisation. This classification was based on traits of the butterfly and burnet moth species and on their larval host plants. We collected data on temperature and precipitation for our study area over the same period. The number of species declined substantially from 1840 (117 species) to 2013 (71 species). The proportion of habitat specialists decreased, and most of these are currently endangered. In contrast, the proportion of habitat generalists increased. Species with restricted dispersal behavior and species in need of areas poor in soil nutrients had severe losses. Furthermore, our data indicated a decrease in species composition similarity between different decades over time. These data on species composition changes and the general trends of modifications may reflect effects from climate change and atmospheric nitrogen loads, as indicated by the ecological characteristics of host plant species and local changes in habitat configuration with increasing fragmentation. Our observation of major declines over time of currently threatened and protected species shows the importance of efficient conservation strategies.  相似文献   
52.
Abstract: The effects of non‐native invasive species are costly and environmentally damaging, and resources to slow their spread and reduce their effects are scarce. Models that accurately predict where new invasions will occur could guide the efficient allocation of resources to slow colonization. We assessed the accuracy of a model that predicts the probability of colonization of lakes in Wisconsin by Eurasian watermilfoil (Myriophyllum spicatum). We based this predictive model on 9 years (1990–1999) of sequence data of milfoil colonization of lakes larger than 25 ha (n =1803). We used milfoil colonization sequence data from 2000 to 2006 to test whether the model accurately predicted the number of lakes that actually were colonized from among the 200 lakes identified as being most likely to be colonized. We found that a lake's predicted probability of colonization was not correlated with whether a lake actually was colonized. Given the low predictability of colonization of specific lakes, we compared the efficacy of preventing milfoil from leaving occupied sites, which does not require predicting colonization probability, with protecting vacant sites from being colonized, which does require predicting colonization probability. Preventing organisms from leaving colonized sites reduced the likelihood of spread more than protecting vacant sites. Although we focused on the spread of a single species in a particular region, our results show the shortcomings of gravity models in predicting the spread of numerous non‐native species to a variety of locations via a wide range of vectors.  相似文献   
53.
Abstract:  The brown tree snake ( Boiga irregularis ) is a devastating invader that has ecologically and economically affected Guam and is poised to disperse further. Interdiction efforts are being conducted on Guam and some of the potential receiving sites, but no tools exist for evaluating the potential for snake incursion; thus, the amount of effort that should be invested in protecting particular sites is unknown. We devised a model that predicts the relative risk of establishment of the brown tree snake (BTS) at a given site. To calculate overall risk, we incorporated in the model information on the likelihood of an organism entering the transportation system, avoiding detection, surviving to arrive at another location, and establishing at the receiving end. On the basis of documented rates of snake arrival at receiving sites, the model produced realistic predictions of invasion risk. Model outputs can thus be used to prioritize interdiction efforts to focus on especially vulnerable receiving locations. We provide examples of the utility of the model in evaluating the impacts of changes in transportation parameters. Finally, the model can be used to evaluate the impacts that BTS establishment at an additional site and that creation of a new source of snakes would have. The use of qualitative inputs allows the model to be adapted by substituting data on other invasive species or transportation systems.  相似文献   
54.
Abstract: Lethal control, which has been used to reduce local abundances of animals in conflict with humans or with endangered species, may not achieve management goals if animal movement is not considered. In populations with emigration and immigration, lethal control may induce compensatory immigration, if the source of attraction remains unchanged. Within the Columbia River Basin (Washington, U.S.A.), avian predators forage at dams because dams tend to reduce rates of emigration of juvenile salmonids (Oncorhynchus spp.), artificially concentrating these prey. We used differences in fatty acid profiles between Caspian Terns (Hydroprogne caspia) at coastal and inland breeding colonies and terns culled by a lethal control program at a mid‐Columbia River dam to infer dispersal patterns. We modeled the rate of loss of fatty acid biomarkers, which are fatty acids that can be traced to a single prey species or groups of species, to infer whether and when terns foraging at dams had emigrated from the coast. Nonmetric multidimensional scaling showed that coastal terns had high levels of C20 and C22 monounsaturated fatty acids, whereas fatty acids of inland breeders were high in C18:3n3, C20:4n6, and C22:5n3. Models of the rate of loss of fatty acid showed that approximately 60% of the terns collected at Rock Island Dam were unlikely to have bred successfully at local (inland) sites, suggesting that terns foraging at dams come from an extensive area. Fatty acid biomarkers may provide accurate information about patterns of dispersal in animal populations and may be extremely valuable in cases where populations differ demonstrably in prey base.  相似文献   
55.
Abstract: Anthropogenic habitat perturbation is a major cause of population decline. A standard practice managers use to protect populations is to leave portions of natural habitat intact. We describe a case study in which, despite the use of this practice, the critically endangered lizard Acanthodactylus beershebensis was locally extirpated from both manipulated and natural patches within a mosaic landscape of an afforestation project. We hypothesized that increased structural complexity in planted patches favors avian predator activity and makes these patches less suitable for lizards due to a heightened risk of predation. Spatial rarity of natural perches (e.g., trees) in arid scrublands may hinder the ability of desert lizards to associate perches with low‐quality habitat, turning planted patches into ecological traps for such species. We erected artificial trees in a structurally simple arid habitat (similar to the way trees were planted in the afforestation project) and compared lizard population dynamics in plots with these structures and without. Survival of lizards in the plots with artificial trees was lower than survival in plots without artificial trees. Hatchlings dispersed into plots with artificial trees in a manner that indicated they perceived the quality of these plots as similar to the surrounding, unmanipulated landscape. Our results showed that local anthropogenic changes in habitat structure that seem relatively harmless may have a considerable negative effect beyond the immediate area of the perturbation because the disturbed habitat may become an ecological trap.  相似文献   
56.
Abstract: Quality of the agricultural matrix profoundly affects biodiversity and dispersal in agricultural areas. Vegetatively complex coffee agroecosystems maintain species richness at larger distances from the forest. Epiphytes colonize canopy trees and provide resources for birds and insects and thus effects of agricultural production on epiphytes may affect other species. We compared diversity, composition, and vertical stratification of epiphytes in a forest fragment and in two coffee farms differing in management intensity in southern Mexico. We also examined spatial distribution of epiphytes with respect to the forest fragment to examine quality of the two agricultural matrix types for epiphyte conservation. We sampled vascular epiphytes in a forest fragment, a shade polyculture farm, and a shade monoculture farm at 100 m, 200 m, and 400 m from the forest. Epiphyte and orchid richness was greater in the forest than in the monoculture but richness was similar in the forest and polyculture farm. Epiphyte species composition differed with habitat type, but not with distance from the forest. In the forest, epiphytes were distributed throughout tree canopies, but in the farms, epiphytes were primarily found on trunks and larger branches. Epiphyte richness and species similarity to forest species declined with distance from the forest fragment in the monoculture, but richness and similarity to forest species did not decline with distance from forest in the polyculture. This suggests polyculture coffee has greater conservation value. In contrast, monoculture coffee is likely a sink habitat for epiphytes dispersing from forests into coffee. Coffee farms differ from forests in terms of the habitat they provide and species composition, thus protecting forest fragments is essential for epiphyte conservation. Nonetheless, in agricultural landscapes, vegetatively complex coffee farms may contribute to conservation of epiphytes more than other agricultural land uses.  相似文献   
57.
Abstract:  Hunting of hornbills by tribal communities is widespread in logged foothill forests of the Indian Eastern Himalaya. We investigated whether the decline of hornbills has affected the dispersal and recruitment of 3 large-seeded tree species. We hypothesized that 2 low-fecundity tree species , Chisocheton paniculatus and Dysoxylum binectariferum (Meliaceae) bearing arillate fruits, are more dispersal limited than a prolifically fruiting drupaceous tree Polyalthia simiarum (Annonaceae), which has potential dispersers other than hornbills. We estimated the abundance of large avian frugivores during the fruiting season along transects in 2 protected and 2 disturbed forests. We compared recruitment of the tree species near (<10 m) and far (10–40 m) from parent trees at protected and disturbed sites. Median abundance of Great ( Buceros bicornis ), Wreathed ( Aceros undulatus ), and Oriental Pied Hornbills ( Anthracoceros albirostris ) were significantly lower in disturbed forests, but sites did not differ in abundances of the Mountain Imperial Pigeon ( Ducula badia ). Overall, tree species showed more severely depressed recruitment of seedlings (77% fewer) and juveniles (69% fewer) in disturbed than in protected forests. In disturbed forests, 93% fewer seedlings of C. paniculatus were beyond parental crowns, and a high number of all seedlings (42%) accumulated directly under reproductive adults. In contrast , D. binectariferum and P. simiarum were recruitment rather than dispersal limited, with fewer dispersed seedlings surviving in disturbed than in protected forests. Results are consistent with the idea that disturbance disrupts mutualisms between hornbills and some large-seeded food plants, with the caveat that role redundancy within even small and specialized disperser assemblages renders other tree species less vulnerable to loss of regular dispersal agents.  相似文献   
58.
59.
为阐明中国湖泊细菌群落的生物地理分布格局及驱动机制,基于已发表文献,收集了228个湖泊的浮游或沉积物细菌门水平分类数据和环境因子数据进行分析.结果表明:中国湖泊浮游细菌群落的优势类群为变形菌门(Proteobacteria,35.92%)、放线菌门(Actinobacteria,25.03%)和拟杆菌门(Bacteroidetes,10.77%),沉积物中的优势类群为变形菌门(Proteobacteria,40.37%)、绿弯菌门(Chloroflexi,8.74%)和拟杆菌门(Bacteroidetes,8.55%).中国湖泊浮游细菌距离衰减程度显著低于沉积物细菌;湖泊细菌群落结构在北方、南方、青藏高原的空间差异显著,北方水体及沉积物中细菌的距离衰减模式均不显著,南方水体中显著但沉积物中不显著,青藏高原水体及沉积物中均显著.浮游细菌优势类群中除Proteobacteria外,Actinobacteria (南方>北方>青藏高原)和Bacteroidetes (青藏高原>北方>南方)的丰度在三个地区均具有显著差异;沉积物细菌优势类群Proteobacteria (北方>南方>青藏高原)、Chloroflexi (南方>北方>青藏高原)、Bacteroidetes (青藏高原>北方>南方)的丰度在三个地区均具有显著差异.影响北方湖泊浮游细菌群落分布的主要环境因子是溶解性有机碳,南方是溶解氧,青藏高原是硝酸盐氮;影响北方湖泊沉积物细菌群落分布的主要环境因子是总氮和pH值,南方是总磷,青藏高原是pH值.空间扩散限制与环境筛选作用共同塑造了中国湖泊细菌的生物地理分布格局.扩散限制对浮游细菌的影响小于沉积物细菌,对青藏高原湖泊浮游及沉积物细菌影响最大,对北方湖泊浮游及沉积物细菌影响最小;环境筛选作用对青藏高原湖泊浮游及沉积物细菌影响最大,对南方湖泊浮游细菌及北方湖泊沉积物细菌影响较小.  相似文献   
60.
Limited knowledge of dispersal for most organisms hampers effective connectivity conservation in fragmented landscapes. In forest ecosystems, deadwood‐dependent organisms (i.e., saproxylics) are negatively affected by forest management and degradation globally. We reviewed empirically established dispersal ecology of saproxylic insects and fungi. We focused on direct studies (e.g., mark‐recapture, radiotelemetry), field experiments, and population genetic analyses. We found 2 somewhat opposite results. Based on direct methods and experiments, dispersal is limited to within a few kilometers, whereas genetic studies showed little genetic structure over tens of kilometers, which indicates long‐distance dispersal. The extent of direct dispersal studies and field experiments was small and thus these studies could not have detected long‐distance dispersal. Particularly for fungi, more studies at management‐relevant scales (1–10 km) are needed. Genetic researchers used outdated markers, investigated few loci, and faced the inherent difficulties of inferring dispersal from genetic population structure. Although there were systematic and species‐specific differences in dispersal ability (fungi are better dispersers than insects), it seems that for both groups colonization and establishment, not dispersal per se, are limiting their occurrence at management‐relevant scales. Because most studies were on forest landscapes in Europe, particularly the boreal region, more data are needed from nonforested landscapes in which fragmentation effects are likely to be more pronounced. Given the potential for long‐distance dispersal and the logical necessity of habitat area being a more fundamental landscape attribute than the spatial arrangement of habitat patches (i.e., connectivity sensu strict), retaining high‐quality deadwood habitat is more important for saproxylic insects and fungi than explicit connectivity conservation in many cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号