全文获取类型
收费全文 | 1392篇 |
免费 | 491篇 |
国内免费 | 8篇 |
专业分类
安全科学 | 5篇 |
废物处理 | 9篇 |
环保管理 | 16篇 |
综合类 | 39篇 |
基础理论 | 1778篇 |
污染及防治 | 20篇 |
评价与监测 | 6篇 |
社会与环境 | 15篇 |
灾害及防治 | 3篇 |
出版年
2024年 | 1篇 |
2023年 | 107篇 |
2022年 | 99篇 |
2021年 | 131篇 |
2020年 | 133篇 |
2019年 | 116篇 |
2018年 | 94篇 |
2017年 | 133篇 |
2016年 | 120篇 |
2015年 | 148篇 |
2014年 | 157篇 |
2013年 | 136篇 |
2012年 | 102篇 |
2011年 | 109篇 |
2010年 | 134篇 |
2009年 | 32篇 |
2008年 | 52篇 |
2007年 | 6篇 |
2006年 | 7篇 |
2005年 | 8篇 |
2004年 | 4篇 |
2003年 | 8篇 |
2002年 | 12篇 |
2001年 | 7篇 |
2000年 | 5篇 |
1999年 | 4篇 |
1998年 | 6篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1988年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1975年 | 1篇 |
排序方式: 共有1891条查询结果,搜索用时 15 毫秒
851.
Enrico Di Minin Christoph Fink Anna Hausmann Jens Kremer Ritwik Kulkarni 《Conservation biology》2021,35(2):437-446
Social media data are being increasingly used in conservation science to study human–nature interactions. User-generated content, such as images, video, text, and audio, and the associated metadata can be used to assess such interactions. A number of social media platforms provide free access to user-generated social media content. However, similar to any research involving people, scientific investigations based on social media data require compliance with highest standards of data privacy and data protection, even when data are publicly available. Should social media data be misused, the risks to individual users' privacy and well-being can be substantial. We investigated the legal basis for using social media data while ensuring data subjects’ rights through a case study based on the European Union's General Data Protection Regulation. The risks associated with using social media data in research include accidental and purposeful misidentification that has the potential to cause psychological or physical harm to an identified person. To collect, store, protect, share, and manage social media data in a way that prevents potential risks to users involved, one should minimize data, anonymize data, and follow strict data management procedure. Risk-based approaches, such as a data privacy impact assessment, can be used to identify and minimize privacy risks to social media users, to demonstrate accountability and to comply with data protection legislation. We recommend that conservation scientists carefully consider our recommendations in devising their research objectives so as to facilitate responsible use of social media data in conservation science research, for example, in conservation culturomics and investigations of illegal wildlife trade online. 相似文献
852.
Andrew N. Kadykalo Rachel T. Buxton Peter Morrison Christine M. Anderson Holly Bickerton Charles M. Francis Adam C. Smith Lenore Fahrig 《Conservation biology》2021,35(6):1725-1737
Calls for biodiversity conservation practice to be more evidence based are growing, and we agree evidence use in conservation practice needs improvement. However, evidence-based conservation will not be realized without improved access to evidence. In medicine, unlike in conservation, a well-established and well-funded layer of intermediary individuals and organizations engage with medical practitioners, synthesize primary research relevant to decision making, and make evidence easily accessible. These intermediaries prepare targeted evidence summaries and distribute them to practitioners faced with time-sensitive and value-laden decisions. To be effective, these intermediaries, who we refer to as evidence bridges, should identify research topics based on the priorities of practitioners; synthesize evidence; prepare and distribute easy-to-find and easy-to-use evidence summaries; and develop and maintain networks of connections with researchers and practitioners. Based on a review of the literature regarding evidence intermediaries in conservation and environmental management, as well as an anonymous questionnaire searching for such organizations, we found few intermediaries that met all these criteria. Few evidence bridges that do exist are unable to reach most conservation practitioners, which include resource managers in government and industry, conservation organizations, and farmers and other private landowners. We argue that the lack of evidence bridges from research to practitioners contributes to evidence complacency and limits the use of evidence in conservation action. Nevertheless, several existing organizations help reduce the gap between evidence and practice and could serve as a foundation for building additional components of evidence bridges in conservation. Although evidence bridges need expertise in research and evidence synthesis, they also require expertise in identifying and communicating with the community of practitioners most in need of clear and concise syntheses of evidence. Article Impact Statement: Evidence-based conservation will not be realized without improved access to evidence. We call for intermediary evidence bridges. 相似文献
853.
Lin Wang Bin Yang Yang Bai Xiaoqiang Lu Richard T. Corlett Yunhong Tan Xiao-Yong Chen Jianguo Zhu Yan Liu Rui-Chang Quan 《Conservation biology》2021,35(6):1797-1808
Transboundary conservation is playing an increasingly important role in maintaining ecosystem integrity and halting biodiversity loss caused by anthropogenic activities. However, lack of information on species distributions in transboundary regions and understanding of the threats in these areas impairs conservation. We developed a spatial conservation plan for the transboundary areas between Yunnan province, southwestern China, and neighboring Myanmar, Laos, and Vietnam in the Indo-Burma biodiversity hotspot. To identify priority areas for conservation and restoration, we determined species distribution patterns and recent land-use changes and examined the spatiotemporal dynamics of the connected natural forest, which supports most species. We assessed connectivity with equivalent connected area (ECA), which is the amount of reachable habitat for a species. An ECA incorporates the presence of habitat in a patch and the amount of habitat in other patches within dispersal distance. We analyzed 197,845 locality records from specimen collections and monographs for 21,004 plant and vertebrate species. The region of Yunnan immediately adjacent to the international borders had the highest species richness, with 61% of recorded species and 56% of threatened vertebrates, which suggests high conservation value. Satellite imagery showed the area of natural forest in the border zone declined by 5.2% (13,255 km2) from 1995 to 2018 and monoculture plantations increased 92.4%, shrubland 10.1%, and other cropland 6.2%. The resulting decline in connected natural forest reduced the amount of habitat, especially for forest specialists with limited dispersal abilities. The most severe decline in connectivity was along the Sino-Vietnamese border. Many priority areas straddle international boundaries, indicating demand and potential for establishing transboundary protected areas. Our results illustrate the importance of bi- and multilateral cooperation to protect biodiversity in this region and provide guidance for future conservation planning and practice. 相似文献
854.
Understanding how anthropogenic disturbances affect plant–pollinator systems has important implications for the conservation of biodiversity and ecosystem functioning. Previous laboratory studies show that pesticides and pathogens, which have been implicated in the rapid global decline of pollinators over recent years, can impair behavioral processes needed for pollinators to adaptively exploit floral resources and effectively transfer pollen among plants. However, the potential for these sublethal stressor effects on pollinator–plant interactions at the individual level to scale up into changes to the dynamics of wild plant and pollinator populations at the system level remains unclear. We developed an empirically parameterized agent-based model of a bumblebee pollination system called SimBee to test for effects of stressor-induced decreases in the memory capacity and information processing speed of individual foragers on bee abundance (scenario 1), plant diversity (scenario 2), and bee–plant system stability (scenario 3) over 20 virtual seasons. Modeling of a simple pollination network of a bumblebee and four co-flowering bee-pollinated plant species indicated that bee decline and plant species extinction events could occur when only 25% of the forager population showed cognitive impairment. Higher percentages of impairment caused 50% bee loss in just five virtual seasons and system-wide extinction events in less than 20 virtual seasons under some conditions. Plant species extinctions occurred regardless of bee population size, indicating that stressor-induced changes to pollinator behavior alone could drive species loss from plant communities. These findings indicate that sublethal stressor effects on pollinator behavioral mechanisms, although seemingly insignificant at the level of individuals, have the cumulative potential in principle to degrade plant–pollinator species interactions at the system level. Our work highlights the importance of an agent-based modeling approach for the identification and mitigation of anthropogenic impacts on plant–pollinator systems. 相似文献
855.
Virginie Marques Paul Castagné Andréa Polanco Fernández Giomar Helena Borrero-Pérez Régis Hocdé Pierre-Édouard Guérin Jean-Baptiste Juhel Laure Velez Nicolas Loiseau Tom Bech Letessier Sandra Bessudo Alice Valentini Tony Dejean David Mouillot Loïc Pellissier Sébastien Villéger 《Conservation biology》2021,35(6):1944-1956
Assessing the impact of global changes and protection effectiveness is a key step in monitoring marine fishes. Most traditional census methods are demanding or destructive. Nondisturbing and nonlethal approaches based on video and environmental DNA are alternatives to underwater visual census or fishing. However, their ability to detect multiple biodiversity factors beyond traditional taxonomic diversity is still unknown. For bony fishes and elasmobranchs, we compared the performance of eDNA metabarcoding and long-term remote video to assess species’ phylogenetic and functional diversity. We used 10 eDNA samples from 30 L of water each and 25 hr of underwater videos over 4 days on Malpelo Island (pacific coast of Colombia), a remote marine protected area. Metabarcoding of eDNA detected 66% more molecular operational taxonomic units (MOTUs) than species on video. We found 66 and 43 functional entities with a single eDNA marker and videos, respectively, and higher functional richness for eDNA than videos. Despite gaps in genetic reference databases, eDNA also detected a higher fish phylogenetic diversity than videos; accumulation curves showed how 1 eDNA transect detected as much phylogenetic diversity as 25 hr of video. Environmental DNA metabarcoding can be used to affordably, efficiently, and accurately census biodiversity factors in marine systems. Although taxonomic assignments are still limited by species coverage in genetic reference databases, use of MOTUs highlights the potential of eDNA metabarcoding once reference databases have expanded. 相似文献
856.
Plant translocation is a useful tool for implementing assisted gene flow in recovery plans of critically endangered plant species. Although it helps to restore genetically viable populations, it is not devoid of genetic risks, such as poor adaptation of transplants and outbreeding depression in the hybrid progeny, which may have negative consequences in terms of demographic growth and plant fitness. Hence, a follow-up genetic monitoring should evaluate whether the translocated populations are genetically viable and self-sustaining in the short and long term. The causes of failure to adjust management responses also need to be identified. Molecular markers and fitness-related quantitative traits can be used to determine whether a plant translocation enhanced genetic diversity, increased fitness, and improved the probability of long-term survival. We devised guidelines and illustrated them with studies from the literature to help practitioners determine the appropriate genetic survey methods so that management practices can better integrate evolutionary processes. These guidelines include methods for sampling and for assessing changes in genetic diversity and differentiation, contemporary gene flow, mode of local recruitment, admixture level, the effects of genetic rescue, inbreeding or outbreeding depression and local adaptation on plant fitness, and long-term genetic changes. 相似文献
857.
Sara Kophamel Björn Illing Ellen Ariel Morgan Difalco Lee F. Skerratt Mark Hamann Leigh C. Ward Diana Méndez Suzanne L. Munns 《Conservation biology》2022,36(1):e13724
Wildlife health assessments help identify populations at risk of starvation, disease, and decline from anthropogenic impacts on natural habitats. We conducted an overview of available health assessment studies in noncaptive vertebrates and devised a framework to strategically integrate health assessments in population monitoring. Using a systematic approach, we performed a thorough assessment of studies examining multiple health parameters of noncaptive vertebrate species from 1982 to 2020 (n = 261 studies). We quantified trends in study design and diagnostic methods across taxa with generalized linear models, bibliometric analyses, and visual representations of study location versus biodiversity hotspots. Only 35% of studies involved international or cross-border collaboration. Countries with both high and threatened biodiversity were greatly underrepresented. Species that were not listed as threatened on the International Union for Conservation of Nature Red List represented 49% of assessed species, a trend likely associated with the regional focus of most studies. We strongly suggest following wildlife health assessment protocols when planning a study and using statistically adequate sample sizes for studies establishing reference ranges. Across all taxa blood analysis (89%), body composition assessments (81%), physical examination (72%), and fecal analyses (24% of studies) were the most common methods. A conceptual framework to improve design and standardize wildlife health assessments includes guidelines on the experimental design, data acquisition and analysis, and species conservation planning and management implications. Integrating a physiological and ecological understanding of species resilience toward threatening processes will enable informed decision making regarding the conservation of threatened species. 相似文献
858.
John R. Post Hillary G. M. Ward Kyle L. Wilson George L. Sterling Ariane Cantin Eric B. Taylor 《Conservation biology》2022,36(3):e13783
Use of extensive but low-resolution abundance data is common in the assessment of species at-risk status based on quantitative decline criteria under International Union for Conservation of Nature (IUCN) and national endangered species legislation. Such data can be problematic for 3 reasons. First, statistical power to reject the null hypothesis of no change is often low because of small sample size and high sampling uncertainty leading to a high frequency of type II errors. Second, range-wide assessments composed of multiple site-specific observations do not effectively weight site-specific trends into global trends. Third, uncertainty in site-specific temporal trends and relative abundance are not propagated at the appropriate spatial scale. A common result is the propensity to underestimate the magnitude of declines and therefore fail to identify the appropriate at-risk status for a species. We used 3 statistical approaches, from simple to more complex, to estimate temporal decline rates for a designatable unit (DU) of rainbow trout in the Athabasca River watershed in western Canada. This DU is considered a native species for purposes of listing because of its genetic composition characterized as >0.95 indigenous origin in the face of continuing introgressive hybridization with introduced populations in the watershed. Analysis of abundance trends from 57 time series with a fixed-effects model identified 33 sites with negative trends, but only 2 were statistically significant. By contrast, a hierarchical linear mixed model weighted by site-specific abundance provided a DU-wide decline estimate of 16.4% per year and a 3-generation decline of 93.2%. A hierarchical Bayesian mixed model yielded a similar 3-generation decline trend of 91.3% and the posterior distribution showed that the estimate had a >99% probability of exceeding thresholds for an endangered listing. We conclude that the Bayesian approach was the most useful because it provided a probabilistic statement of threshold exceedance in support of an at-risk status recommendation. 相似文献
859.
Laura Mannocci Sébastien Villon Marc Chaumont Nacim Guellati Nicolas Mouquet Corina Iovan Laurent Vigliola David Mouillot 《Conservation biology》2022,36(1):e13798
Deep learning has become a key tool for the automated monitoring of animal populations with video surveys. However, obtaining large numbers of images to train such models is a major challenge for rare and elusive species because field video surveys provide few sightings. We designed a method that takes advantage of videos accumulated on social media for training deep-learning models to detect rare megafauna species in the field. We trained convolutional neural networks (CNNs) with social media images and tested them on images collected from field surveys. We applied our method to aerial video surveys of dugongs (Dugong dugon) in New Caledonia (southwestern Pacific). CNNs trained with 1303 social media images yielded 25% false positives and 38% false negatives when tested on independent field video surveys. Incorporating a small number of images from New Caledonia (equivalent to 12% of social media images) in the training data set resulted in a nearly 50% decrease in false negatives. Our results highlight how and the extent to which images collected on social media can offer a solid basis for training deep-learning models for rare megafauna detection and that the incorporation of a few images from the study site further boosts detection accuracy. Our method provides a new generation of deep-learning models that can be used to rapidly and accurately process field video surveys for the monitoring of rare megafauna. 相似文献
860.
Dominique G. Roche Rose E. O'Dea Kecia A. Kerr Trina Rytwinski Richard Schuster Vivian M. Nguyen Nathan Young Joseph R. Bennett Steven J. Cooke 《Conservation biology》2022,36(3):e13835
The knowledge-action gap in conservation science and practice occurs when research outputs do not result in actions to protect or restore biodiversity. Among the diverse and complex reasons for this gap, three barriers are fundamental: knowledge is often unavailable to practitioners and challenging to interpret or difficult to use or both. Problems of availability, interpretability, and useability are solvable with open science practices. We considered the benefits and challenges of three open science practices for use by conservation scientists and practitioners. First, open access publishing makes the scientific literature available to all. Second, open materials (detailed methods, data, code, and software) increase the transparency and use of research findings. Third, open education resources allow conservation scientists and practitioners to acquire the skills needed to use research outputs. The long-term adoption of open science practices would help researchers and practitioners achieve conservation goals more quickly and efficiently and reduce inequities in information sharing. However, short-term costs for individual researchers (insufficient institutional incentives to engage in open science and knowledge mobilization) remain a challenge. We caution against a passive approach to sharing that simply involves making information available. We advocate a proactive stance toward transparency, communication, collaboration, and capacity building that involves seeking out and engaging with potential users to maximize the environmental and societal impact of conservation science. 相似文献