首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1392篇
  免费   491篇
  国内免费   7篇
安全科学   5篇
废物处理   9篇
环保管理   16篇
综合类   39篇
基础理论   1778篇
污染及防治   19篇
评价与监测   6篇
社会与环境   15篇
灾害及防治   3篇
  2024年   1篇
  2023年   107篇
  2022年   99篇
  2021年   131篇
  2020年   133篇
  2019年   116篇
  2018年   94篇
  2017年   133篇
  2016年   119篇
  2015年   148篇
  2014年   157篇
  2013年   136篇
  2012年   102篇
  2011年   109篇
  2010年   134篇
  2009年   32篇
  2008年   52篇
  2007年   6篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   8篇
  2002年   12篇
  2001年   7篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1983年   1篇
  1982年   2篇
  1975年   1篇
排序方式: 共有1890条查询结果,搜索用时 93 毫秒
861.
Reviews that summarize the genetic diversity of plant species in relation to their life history and ecological traits show that forest trees have more genetic diversity at population and species levels than annuals or herbaceous perennials. In addition, among-population genetic differentiation is significantly lower in trees than in most herbaceous perennials and annuals. Possible reasons for these differences between trees and herbaceous perennials and annuals have not been discussed critically. Several traits, such as high rates of outcrossing, long-distance pollen and seed dispersal, large effective population sizes (Ne), arborescent stature, low population density, longevity, overlapping generations, and occurrence in late successional communities, may make trees less sensitive to genetic bottlenecks and more resistant to habitat fragmentation or climate change. We recommend that guidelines for genetic conservation strategies be designed differently for tree species versus other types of plant species. Because most tree species fit an LH scenario (low [L] genetic differentiation and high [H] genetic diversity), tree seeds could be sourced from a few populations distributed across the species’ range. For the in situ conservation of trees, translocation is a viable option to increase Ne. In contrast, rare herbaceous understory species are frequently HL (high differentiation and low diversity) species. Under the HL scenario, seeds should be taken from many populations with high genetic diversity. In situ conservation efforts for herbaceous plants should focus on protecting habitats because the typically small populations of these species are vulnerable to the loss of genetic diversity. The robust allozyme genetic diversity databases could be used to develop conservation strategies for species lacking genetic information. As a case study of reforestation with several tree species in denuded areas on the Korean Peninsula, we recommend the selection of local genotypes as suitable sources to prevent adverse effects and to insure the successful restoration in the long term.  相似文献   
862.
Millennia of human conflict with wildlife have built a culture of intolerance toward wildlife among some stakeholders. We explored 2 key obstacles to improved human–wildlife coexistence: coexistence inequality (how the costs and benefits of coexisting with wildlife are unequally shared) and intolerance. The costs of coexisting with wildlife are often disproportionately borne by the so-called global south and rural communities, and the benefits often flow to the global north and urban dwellers. Attitudes and behaviors toward wildlife (tolerance versus intolerance) vary with social and cultural norms. We suggest more empathetic advocacy is needed that, for example, promotes conservation while appropriately considering those who bear the costs of conflict with wildlife. To achieve more equitable cost-sharing, we suggest limiting the costs incurred by those most affected or by sharing those costs more widely. For example, we advocate for the development of improved wildlife compensation schemes, increasing the scale of rewilding efforts, and preventing wildlife-derived revenue leaching out of the local communities bearing the costs of coexistence.  相似文献   
863.
Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to comprehensive models that explicitly include ecological processes. The choice of metrics and models affects how impacts are interpreted and conservation decisions. We explored the impacts of 3 realistic disturbance scenarios on 4 species with different ecological and taxonomic traits. We used progressively more complex models and metrics to evaluate relative impact and rank of scenarios on the species. Models ranged from species distribution models that relied on implicit assumptions about environmental factors and species presence to highly parameterized spatially explicit population models that explicitly included ecological processes and stochasticity. Metrics performed consistently in ranking different scenarios in order of severity primarily when variation in impact was driven by habitat amount. However, they differed in rank for cases where dispersal dynamics were critical in influencing metapopulation persistence. Impacts of scenarios on species with low dispersal ability were better characterized using models that explicitly captured these processes. Metapopulation capacity provided rank orders that most consistently correlated with those from highly parameterized and data-rich models and incorporated information about dispersal with little additional computational and data cost. Our results highlight the importance of explicitly considering species’ ecology, spatial configuration of habitat, and disturbance when choosing indicators of species persistence. We suggest using hybrid approaches that are a mixture of simple and complex models to improve multispecies assessments.  相似文献   
864.
The importance of large reserves has been long maintained in the scientific literature, often leading to dismissal of the conservation potential of small reserves. However, over half the global protected-area inventory is composed of protected areas that are <100 ha, and the median size of added protected area is decreasing. Studies of the conservation value of small reserves and fragments of natural area are relatively uncommon in the literature. We reviewed SCOPUS and WOK for studies on small reserve and fragment contributions to biodiversity conservation and ecosystem services, and fifty-eight taxon-specific studies were included in the review. Small reserves harbored substantial portions (upward of 50%) of regional species diversity for many taxa (birds, plants, amphibians, and small mammals) and even some endemic, specialist bird species. Unfortunately, small reserves and fragments almost always harbored more generalist and exotic species than large reserves. Community composition depended on habitat quality, surrounding land use (agricultural vs. urban), and reserve and fragment size, which presents opportunities for management and improvement. Small reserves also provided ecosystem services, such as pollination and biological pest control, and cultural services, such as recreation and improved human health. Limitations associated with small reserves, such as extinction debt and support of area-sensitive species, necessitate a complement of larger reserves. However, we argue that small reserves can make viable and significant contributions to conservation goals directly as habitat and indirectly by increasing landscape connectivity and quality to the benefit of large reserves. To effectively conserve biodiversity for future generations in landscapes fragmented by human development, small reserves and fragments must be included in conservation planning.  相似文献   
865.
The cascading effects of biodiversity loss on ecosystem functioning of forests have become more apparent. However, how edge effects shape these processes has yet to be established. We assessed how edge effects alter arthropod populations and the strength of any resultant trophic cascades on herbivory rate in tropical forests of Brazil. We established 7 paired forest edge and interior sites. Each site had a vertebrate-exclosure, procedural (exclosure framework with open walls), and control plot (total 42 plots). Forest patches were surrounded by pasture. Understory arthropods and leaf damage were sampled every 4 weeks for 11 months. We used path analysis to determine the strength of trophic cascades in the interior and edge sites. In forest interior exclosures, abundance of predaceous and herbivorous arthropods increased by 326% and 180%, respectively, compared with control plots, and there were significant cascading effects on herbivory. Edge-dwelling invertebrates responded weakly to exclusion and there was no evidence of trophic cascade. Our results suggest that the vertebrate community at forest edges controls invertebrate densities to a lesser extent than it does in the interior. Edge areas can support vertebrate communities with a smaller contingent of insectivores. This allows arthropods to flourish and indirectly accounts for higher levels of plant damage at these sites. Increased herbivory rates may have important consequences for floristic community composition and primary productivity, as well as cascading effects on nutrient cycling. By interspersing natural forest patches with agroforests, instead of pasture, abiotic edge effects can be softened and prevented from penetrating deep into the forest. This would ensure a greater proportion of forest remains habitable for sensitive species and could help retain ecosystem functions in edge zones.  相似文献   
866.
The loss of forest is a leading cause of species extinction, and reforestation is 1 of 2 established interventions for reversing this loss. However, the role of reforestation for biodiversity conservation remains debated, and lacking is an assessment of the potential contribution that reforestation could make to biodiversity conservation globally. We conducted a spatial analysis of overlap between 1,550 forest-obligate threatened species’ ranges and land that could be reforested after accounting for socioeconomic and ecological constraints. Reforestation on at least 43% (∼369 million ha) of reforestable area was predicted to potentially benefit threatened vertebrates. This is approximately 15% of the total area where threatened vertebrates occur. The greatest opportunities for conserving threatened vertebrate species are in the tropics, particularly Brazil and Indonesia. Although reforestation is not a substitute for forest conservation, and most of the area containing threatened vertebrates remains forested, our results highlight the need for global conservation strategies to recognize the potentially significant contribution that reforestation could make to biodiversity conservation. If implemented, reforestation of ∼369 million ha would also contribute substantially to climate-change mitigation, offering a way to achieve multiple sustainability commitments at once. Countries must now work to overcome key barriers (e.g., unclear revenue streams, high transaction costs) to investment in reforestation.  相似文献   
867.
Abstract: Climate change will likely have profound effects on cold‐water species of freshwater fishes. As temperatures rise, cold‐water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate‐driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate‐induced changes in summer thermal habitat for 3 cold‐water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.  相似文献   
868.
Abstract: Assessing species survival status is an essential component of conservation programs. We devised a new statistical method for estimating the probability of species persistence from the temporal sequence of collection dates of museum specimens. To complement this approach, we developed quantitative stopping rules for terminating the search for missing or allegedly extinct species. These stopping rules are based on survey data for counts of co‐occurring species that are encountered in the search for a target species. We illustrate both these methods with a case study of the Ivory‐billed Woodpecker (Campephilus principalis), long assumed to have become extinct in the United States in the 1950s, but reportedly rediscovered in 2004. We analyzed the temporal pattern of the collection dates of 239 geo‐referenced museum specimens collected throughout the southeastern United States from 1853 to 1932 and estimated the probability of persistence in 2011 as <6.4 × 10?5, with a probable extinction date no later than 1980. From an analysis of avian census data (counts of individuals) at 4 sites where searches for the woodpecker were conducted since 2004, we estimated that at most 1–3 undetected species may remain in 3 sites (one each in Louisiana, Mississippi, Florida). At a fourth site on the Congaree River (South Carolina), no singletons (species represented by one observation) remained after 15,500 counts of individual birds, indicating that the number of species already recorded (56) is unlikely to increase with additional survey effort. Collectively, these results suggest there is virtually no chance the Ivory‐billed Woodpecker is currently extant within its historical range in the southeastern United States. The results also suggest conservation resources devoted to its rediscovery and recovery could be better allocated to other species. The methods we describe for estimating species extinction dates and the probability of persistence are generally applicable to other species for which sufficient museum collections and field census results are available.  相似文献   
869.
Conflict between people and carnivores can lead to the widespread killing of predators in retaliation for livestock loss and is a major threat to predator populations. In Kenya, a large, rural, pastoralist population comes into regular conflict with predators, which persist across southern Kenya. We explored the social and psychological backdrop to livestock management practices in this area in a process designed to be easy to use and suitable for use across large areas for the study of conflict and transboundary implementation of wildlife conflict reduction measures, focusing on community involvement and needs. We carried out fully structured interviews of livestock managers with a survey tool that examined how social and psychological factors may influence livestock management behavior. We compared survey responses on 3 sites across the study area, resulting in 723 usable responses. Efficacy of individuals’ livestock management varied between and within communities. This variation was partially explained by normative and control beliefs regarding livestock management. Individual livestock managers’ self-reported management issues were often an accurate reflection of their practical management difficulties. Psychological norms, control beliefs, and attitudes differed among sites, and these differences partially explained patterns associated with conflict (i.e., variation in livestock management behavior). Thus, we conclude that a one-size-fits-all approach to improving livestock management and reducing human–predator conflict is not suitable.  相似文献   
870.
Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9‐year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well‐defined resource‐access rights; community respect for a flexible system of customary governance; long‐term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district‐wide coordination, which provided a broader spatial context for adaptive‐management decision making. Co‐Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号