首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   949篇
  免费   65篇
  国内免费   333篇
安全科学   43篇
废物处理   16篇
环保管理   143篇
综合类   573篇
基础理论   225篇
污染及防治   187篇
评价与监测   95篇
社会与环境   61篇
灾害及防治   4篇
  2024年   2篇
  2023年   21篇
  2022年   29篇
  2021年   26篇
  2020年   25篇
  2019年   38篇
  2018年   30篇
  2017年   39篇
  2016年   52篇
  2015年   46篇
  2014年   60篇
  2013年   106篇
  2012年   58篇
  2011年   93篇
  2010年   63篇
  2009年   74篇
  2008年   70篇
  2007年   79篇
  2006年   67篇
  2005年   49篇
  2004年   53篇
  2003年   39篇
  2002年   32篇
  2001年   28篇
  2000年   30篇
  1999年   20篇
  1998年   14篇
  1997年   17篇
  1996年   13篇
  1995年   15篇
  1994年   14篇
  1993年   8篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   4篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1347条查询结果,搜索用时 93 毫秒
81.
综述了国际上典型工业场地有机溶剂污染物在地下水中的自然衰减机制及修复技术的研究现状和发展趋势.场地地下水修复技术从抽出-处理发展到治理污染源区和污染羽的纳米铁技术,涌现出-大批较为成熟的联合化学与微生物修复技术,其中潜力较大的有治理污染羽的渗透反应墙、原位化学氧化、原位化学还原、微生物强化降解及基于监测的自然衰减等.文...  相似文献   
82.
为查明华东某铀矿区稻米中放射性核素铀污染现状及健康风险问题,测定铀矿区和对照区共136件稻米样品中放射性核素U含量,采用单因子污染指数法评价放射性铀污染,并开展U元素健康风险评价。结果表明:(1)研究区稻米中U含量平均值为1.46 ng·g~(–1),各亚区稻米中U含量平均值从大到小顺序为:开采矿井区水冶场区含矿未采区废弃矿井区江西省背景值对照区;(2)稻米单因子污染指数为1.25,属于轻度污染。其中,开采矿井区和水冶厂区为轻度污染,废弃矿井区和对照区未受污染;(3)首次计算提出江西省大米U元素致癌风险最大斜率系数为1.04×10~3(d·kg)·mg~(–1)。各亚区稻米中成人和儿童致癌风险指数高低顺序均为:开采矿井区水冶厂区含矿未采区废弃矿井区对照区。儿童直接饮食稻米具有一定的致癌风险;开采矿井区和水冶厂区的成人存在一定致癌风险,含矿未采区和废弃矿井区以及对照区均无致癌风险。  相似文献   
83.
Two industrial sites were investigated based on years of available hydrogeologic information and monitoring data for soil and groundwater. Collected data were forensically evaluated using age-dating and fingerprinting methods. The previous business uses of the project sites were as a gas station, laundry/dry-cleaning service, and car wash with petroleum underground storage tanks (USTs). As a result, these sites were exposed to a number of toxic contaminants at relatively high concentrations. Source control was necessary for successful remediation and the ultimate removal of the remaining compounds from these industrial sites. Although contaminated soil around the source was excavated during the remedial action and the high concentrations of contaminants were reduced, typical groundwater contaminants such as petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethylbenzene, xylenes (BTEX), and oxygenates including methyl tert-butyl ether (MTBE), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and tert-butyl alcohol (TBA) were persistently found at the studied sites around the source points. The plume and concentration of contaminants had changed their shapes and strength for all monitoring periods. Thus, additional source control seems to be a requirement for the complete removal of source contamination, which must be ascertained with groundwater and soil monitoring on a regular time base. For the study sites, monitored natural attenuation was relatively feasible for the long-term plan; however, it did not offer a perfect remediation solution for an ultimate goal because of residual toxic compounds that might have affected the surrounding residential areas at higher concentrations than their health limits. Therefore, as a remediation strategy, the combination of clean-up technology and natural attenuation with monitoring activities are more highly recommended than either clean-up or natural attenuation used separately.  相似文献   
84.
The objective of this study was to determine the As and Sb contents in soils from the Murcia Region of Spain and the possible relationship between the mineralogical composition, soil properties, and As and Sb concentrations. In this study, 490 samples were selected from areas with different characteristics in order to study As and Sb variability. Results show that As and Sb concentrations are positively correlated with the phyllosilicate and quartz content but negatively correlated with the calcite content. The generic reference level (GRL) for these elements was determined according to the Spanish legislation. Established GRL values vary according to the established mineralogical groups, suggesting that GRL has to be determined considering the lithological characteristics of the study area.  相似文献   
85.
Pot experiments were conducted to examine the effects of various fertilizers, as well as soil dilution treatments on the dynamics of soil-borne DDTs [sum of dichlorodiphenyltrichloroethane (DDT), chlorodiphenyldichloroethylene (DDE) and di- chlorodiphenyldichloroethane (DDD)] and hexachlorocyclohexanes (HCHs, sum of α-HCH, β-HCH, γ-HCH and δ-HCH) and their subsequent impacts on the uptake of DDTs and HCHs by a test plant. The results show that the soil residual DDTs and HCHs concentrations in the iron-rich fertilizer-treated soil were significantly lower than those in other fertilizer-treated soils. There was a close relationship between the soil residual DDTs and the plant tissue DDTs. This suggests that the uptake rate of DDTs by the plant was dependent on the concentration of soil-borne DDTs. A less close relationship between soil residual HCHs and plant tissue HCHs was also observed. Dilution of pesticide-contaminated soil with the non-contaminated soil not only physically reduced the concentration of pesticides in the soil but also enhanced the loss of soil-borne pesticides, possibly through the improvement of soil conditions for microbial degradation. Soil dilution had a better effect on promoting the loss of soil-borne HCHs, relative to soil-borne-DDTs. The research findings obtained from this study have implications for management of heavily contaminated soils with DDTs and HCHs. Remediation of DDTs and HCHs-contaminated soils in a cost-effective way can be achieved by incorporating treatment techniques into conventional agricultural practices. Applications of iron-rich fertilizer and soil dilution treatments could cost-effectively reduce soil-borne DDTs and HCHs, and subsequently the uptake of these organochlorine pesticides by vegetables.  相似文献   
86.
Plant uptake of toxins and their translocation to edible plant parts are important processes in the transfer of contaminants into the food chain. Atropine, a highly toxic muscarine receptor antagonist produced by Solanacea species, is found in all plant tissues and can enter the soil and hence be available for uptake by crops. The absorption of atropine and/or its transformation products from soil by wheat (Triticum aestivum var Kronjet) and its distribution to shoots was investigated by growing wheat in soil spiked with unlabeled or 14C-labeled atropine. Radioactivity attributable to 14C-atropine and its transformation products was measurable in plants sampled at 15 d after sowing (DAS) and thereafter until the end of experiment. The highest accumulation of 14C-atropine and/or its transformation products by plants was detected in leaves (between 73 and 90% of the total accumulated) with lower amounts in stems, roots, and seeds (approximately 14%, 9%, and 3%, respectively). 14C-Atropine and/or its transformation products were detected in soil leachate at 30, 60, and 90 DAS and were strongly adsorbed to soil, with 60% of the applied dose adsorbed at 30 DAS, plateauing at 70% from 60 DAS. Unlabeled atropine was detected in shoots 30 DAS at a concentration of 3.9 ± 0.1 μg kg?1 (mean ± SD). The observed bioconcentration factor was 2.3 ± 0.04. The results suggest a potential risk of atropine toxicity to consumers.  相似文献   
87.
The aim of this study was to evaluate the contamination of six edible wild species of mushrooms (Boletus pulverulentus, Cantharellus cibarius, Lactarius quietus, Macrolepiota procera, Russula xerampelina and Suillus grevillei) by heavy metals (Hg, Cd, Pb, Zn, Cu, Ni, Cr, Co, Mn and Fe). Mushroom samples were collected from sites contaminated by emissions from mining and processing of polymetallic ores in operation during the period 1969–1993 in Rudňany, southeast Slovakia. The four study sites spanned up to a 5-km distance from the emission source. The collected mushroom samples were analyzed using Flame Atomic Absorption Spectrophotometry and/or Flame Atomic Absorption Spectrophotometry with graphite furnace. Mercury, Cd and, in some samples, also Pb present the highest risks in terms of contamination of the food chain following subsequent consumption. The content of two metals in the dry matter (dm) of the mushrooms exceeded the limits set by the European Union (EU; Cd: 0.5 mg/kg dm, Pb: 1.0 mg/kg dm). The highest mean contents of the eight metals recorded for S. grevillei were 52.2, 2.15, 107, 104, 2.27, 2.49, 81.6 and 434 mg/kg dm for Hg, Pb, Zn, Cu, Ni, Cr, Mn and Fe, respectively. The highest content of Cd was recorded in M. procera (3.05 mg/kg dm) and that of Co in L. quietus (0.90 mg/kg dm). The calculated weekly intake for Hg, Pb and Cd shows that regular consumption of mushrooms from the studied area poses risks to human health.  相似文献   
88.
The addition of activated carbon (AC) is an increasingly popular method for pollutant immobilization, and the AC material can be made of biomass or coal/fossil feedstock. The aim of the present study was to investigate whether there are differences between pollutant sorption to biomass and coal-based AC in the presence and absence of sediment. Through N2 and CO2 adsorption to probe surface area and pore size it was shown that the biomass-based AC had a stronger dominance of narrow pores in the size range 3.5-15 Å than the anthracite-based material. In the absence of sediment, sorption isotherms for the probe compounds pyrene and PCB-101 showed stronger sorption for the biomass-based AC (logarithmic Freundlich coefficients 8.15 for pyrene; 9.91 for PCB-101) than for the anthracite-based one (logarithmic Freundlich coefficients 7.20 and 9.70, respectively). In the presence of sediment, the opposite trend was observed, with the stronger sorption for anthracite-based AC. Thus, the presence of competing and/or pore-blocking sediment constituents reduces sorption to a larger extent for biomass-derived AC (factor of 5 for pyrene to almost 100 for PCB-101) than for anthracite-based AC (no reduction for pyrene to factor of 5 for PCB-101). This difference is tentatively attributed to the difference in pore size distribution, narrow pores being more prone to clogging, and could have implications for remediation feasibility with AC from different sources.  相似文献   
89.
Two assays were designed to obtain information about the influence of redox potential variations on barium mobility and bioavailability in soil. One assay was undertaken in leaching columns, and the other was conducted in pots cultivated with rice (Oryza sativa) using soil samples collected from the surface of Gleysol in both assays. Three doses of barium (100,300 mg kg−1 and 3000 mg kg−1-soil dry weight) and two redox potential values (oxidizing and reducing) were evaluated. During the incubation period, the redox potential (Eh) was monitored in columns and pots until values of −250 mV were reached. After the incubation period, geochemical partitioning was conducted on the barium using the European Communities Bureau of Reference (BCR) method. Rainfall of 200 mm d−1 was simulated in the columns and in the planting of rice seedlings in the pots. The results of the geochemical partitioning demonstrated that the condition of reduction favors increased barium concentrations in the more labile chemical forms and decreased levels in the chemical forms related to oxides. The highest barium concentrations in leached extracts (3.36 mg L−1) were observed at the highest dose and condition of reduction at approximately five times above the drinking water standard. The high concentrations of barium in the soil did not affect plant dry matter production. The highest levels and accumulation of barium in roots, leaves, and grains of rice were found at the highest dose and condition of reduction. These results demonstrate that reduction leads to solubilization of barium sulfate, thereby favoring greater mobility and bioavailability of this element.  相似文献   
90.
Fan W  Jia Y  Li X  Jiang W  Lu L 《Chemosphere》2012,88(6):751-756
A microorganism was isolated from oil field injection water and identified as Rhodobacter sphaeroides. It was used for the remediation of simulated cadmium-contaminated soil. The phytoavailability of Cd was investigated through wheat seedling method to determine the efficiency of remediation. It was found that after remediation, the accumulation of Cd in wheat roots and leaves decreased by 67% and 53%, respectively. The Cd speciation in soil was determined with Tessier extraction procedure. It was found that the total Cd content in soil did not change during the experiments, but the geo-speciation of Cd changed remarkably. Among the five fractions, the concentration of exchangeable phases decreased by 27-46% and that of the phases bound to Fe-Mn oxides increased by 22-44%. The decrease of Cd accumulation in wheat showed significant positive correlation with the decrease of exchangeable phases. It could be concluded that the remediation of R. sphaeroides was carried out through the conversion of Cd to more stable forms. The decrease of sulfate concentration in supernatant indicated that the R. sphaeroides consumed sulfate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号