首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   10篇
  国内免费   38篇
安全科学   1篇
废物处理   2篇
环保管理   10篇
综合类   55篇
基础理论   52篇
污染及防治   34篇
评价与监测   12篇
社会与环境   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   25篇
  2012年   9篇
  2011年   9篇
  2010年   5篇
  2009年   7篇
  2008年   8篇
  2007年   8篇
  2006年   16篇
  2005年   10篇
  2004年   8篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   8篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有168条查询结果,搜索用时 31 毫秒
1.
Cadmium and lead were determined in different tissues (muscle,gill, stomach, intestine, liver, vertebral column and scales) of Tilapia nilotica from the High Dam Lake, Aswan (Egypt) to assess the lake water pollution with those toxic metals. Fish samples were chosen from different ages and weights to be analyzed along with samples of the aquatic plant(Najas armeta), sediment and lake water.The results showed that cadmium and lead concentrations were higher in fish scales and vertebral column than in the other parts of the fish. Cadmium and lead levels in High Dam lake water and fish (Tilapia nilotica) were a result of the pollution which uptakes from aquatic plants, sediments andgasoline containing lead that leaks from fishery boats. Tilapia nilotica fish was used as a good bio-assay indicator for the lake pollution with cadmium and lead. The fish musclesin this study were in the safety baseline levels for man consumption.  相似文献   
2.
武汉东湖湖水的藻类生长潜力(AGP)测试   总被引:1,自引:1,他引:1  
在东湖湖水样品中添加排入东湖的主要污水或营养物(氮和磷)进行藻类测试,观察它们对斜生橱藻(Scenedesmus obliquus)的生长促进作用.生长反应与添加的污水浓度成正比,其SC_(20)(促进20%增长的浓度)为0.5—4%.单独添加氮或磷,在高浓度情况下也很少促进藻类生长,但共同添加时大多有促进作用.东湖为一严重富营养型湖泊,为了控制其富营养化进程,污水截流应是首先要采取的一项措施.  相似文献   
3.
基于表征成键原子的生物活性特征值Ai构建取代苯酚的自相关拓扑指数tT,并以0T1、T为结构描述符,分别建立了取代苯酚诱发浮萍萎黄、对日本长腿蛙蝌蚪的QSAR模型:pC=-2.4591+0.51730T-6.3888×10-21T,r=0.9778;24h-LC50=2.1269+1.1013×10-20T+3.4552×10-41T2,r=0.9676.它们的估算结果均优于文献结果,用Jackknife法检验,以上模型具有总体稳健性。  相似文献   
4.
浮萍与水花生净化N、P污染性能比较   总被引:11,自引:0,他引:11  
以经筛选得到的本地优势浮萍和水花生为研究对象,通过设置浮萍、水花生单种和浮萍-水花生混养等三种体系,考察了其对生活污水和稀释的牛场厌氧废水N、P的净化效果。结果表明,浮萍、水花生单种体系和浮萍-水花生混养体系对供试污水TN、TP的最大去除率分别为95.2%、91.1%;80.7%、75.4%和86.4%、86.4%。低有机污染条件下,浮萍吸收N、P的能力优于水花生,但其对COD的去除能力逊色于水花生;当水体有机污染程度较高时,可通过将浮萍和水花生混养,建立共生系统,以高效、稳定地去除污染物。  相似文献   
5.
淀山湖浮游植物营养限制因子的研究   总被引:5,自引:0,他引:5  
通过藻类增长的生物学评价(Nutrient Enrichment Bioassay)研究淀山湖浮游植物生长限制性因子,并采用析因方差分析和事后比较方法分析营养盐(PO3-4P、NH3N、NO-3N)对浮游植物生长速度、平均最大现存量和平均最大特定增长率的影响。研究表明:磷对浮游植物生长有明显的促进作用,能提高浮游植物的生长速度和现存量,且促进作用随磷浓度(0.13~0.53 mg/L)的增加而加强,磷是淀山湖浮游植物增长的第一限制性因子;低浓度硝氮(2.91~5.91 mg/L)对浮游植物生长有微小的促进作用,但高浓度(5.91~8.91 mg/L)的硝氮表现出抑制作用;氨氮对浮游植物生长有抑制作用,并随浓度(1.25~7.25 mg/L)的增加而增大;添加磷+硝氮能明显促进浮游植物生长,磷与硝氮之间存在一定的交互作用.  相似文献   
6.
7.
Two cage designs and fingernail clams(Sphaerium fabale) were evaluated for theirsuitability for use in in situ bioassays toassess the ecological condition of a stream andpredict ecological recovery potential. One design(referred to as tray design) was a modified plastictray about one-fourth full of small gravels andcovered with 1 mm fiberglass mesh. The second design(referred to as tube-plates) consisted of shortplexiglass tubes about one-third full of small gravelsand attached horizontally to a plexiglass plate. Oneend of each tube faced into the current; both endswere covered with mesh. Cages containing clams weredeployed at reference and impacted (test) sites forperiods of 70 to 135 d. Growth and survival were theprimary endpoints evaluated, but the tube-platesallowed isolation of individual clams so that natalityalso could be evaluated as an endpoint. Results ofbenthic macroinvertebrate surveys, performed foranother study, were included to help validate bioassayresults. Both cage designs yielded good quantitative,site-specific results for clam survival and growth;results for natality, though, were less conclusive. Clam survival and growth results were in good generalagreement with the results for the benthicmacroinvertebrate community surveys. At a site wherethe macroinvertebrate community was the mostdepauperate, clam mortality was always rapid. At asite where the condition of the macroinvertebratecommunity was only slightly less impacted than themost impacted site, clam growth was almost alwayssignificantly lower than at reference sites. Survivalof clams was significantly reduced in <25 d at thissite in some trials, but in other trials there waslittle mortality. At a minimally impacted site, clamsurvival was similar to that found at reference sites,and differences in clam growth were not detectableuntil after 40 to 50 d of exposure. The tube-platedesign was easier to use, allowed more flexibility inselection of response parameters, and required lesshandling time of test animals, thus, this was thepreferred design. Our results demonstrated thateither in situ bioassay design can be used toaugment monitoring and assessment programs. Their useas a predictor of ecological recovery, however,requires further evaluation.  相似文献   
8.
Riedl J  Altenburger R 《Chemosphere》2007,67(11):2210-2220
In the last years many efforts were made to transform standardized algal test protocols into low-cost microplate assays. While advantages were pointed out frequently, limitations are not systematically addressed, thus hindering a widespread utilisation. In this study a group of organic substances with a wide distribution of volatility (log KAW from −6.53 to −2.13) and lipophilicity (log KOW from 1.26 to 4.92) was investigated with respect to the influence of these physicochemical properties on their algal toxicity in different assays. Therefore the EC50 values were determined with a microplate assay based on ISO 8692 protocol and the results were compared with those of an established algal growth inhibition test conducted in air tight glass vessels. Using the ratio of the EC50 values, a clear connection between biological response and volatility as well as lipophilicity of test substances could be detected. Chemicals with a log KOW higher than 3 or a Henry coefficient log KAW higher than −4 were identified as less effective in the microplate assay than in the comparative assay. The loss in nominal concentration due to physicochemical properties could be shown to contribute to this using HPLC analysis. Consequently, when using microplate assay’s one should be aware that lipophilic and volatile chemicals might be underestimated in their toxicity, which could be indicated from evaluating related physicochemical properties modelled from structural information prior to an experimental investigation.  相似文献   
9.
Background, Goals and Scope During the last years the miniaturization of toxicity test systems for rapid and parallel measurements of large quantities of samples has often been discussed. For unicellular algae as well as for aquatic macrophytes, fluorescence-based miniaturized test systems have been introduced to analyze photosystem II (PSII) inhibitors. Nevertheless, high-throughput screening should also guarantee the effect detection of a broad range of toxicants in order to ensure routinely applicable, high-throughput measuring device experiments which can cover a broad range of toxicants and modes of action others than PSII inhibition. Thus, the aim of this study was to establish a fast and reproducible measuring system for non-PSII inhibitors for aquatic macrophyte species to overcome major limitations for use. Methods A newly developed imaging pulse-amplitude-modulated chlorophyll fluorometer (I-PAM) was applied as an effect detector in short-term bioassays with the aquatic macrophyte species Lemna minor. This multiwell-plate based measuring device enabled the incubation and measurement of up to 24 samples in parallel. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal care products (PPCPs), which are often detected in the aquatic environment. The I-PAM was used (i) to establish and validate the sensitivity of the test system to the three non-PSII inhibitors, (ii) to compare the test systems with standardized and established biotests for aquatic macrophytes, and (iii) to define necessary time scales in aquatic macrophyte testing. For validation of the fluorescence-based assay, the standard growth test with L. minor (ISO/DIS 20079) was performed in parallel for each chemical. Results The results revealed that fluorescence-based measurements with the I-PAM allow rapid and parallel analysis of large amounts of aquatic macrophyte samples. The I-PAM enabled the recording of concentration-effect-curves with L. minor samples on a 24-well plate with single measurements. Fluorescence-based concentration-effect-curves could be detected for all three chemicals after only 1 h of incubation. After 4–5 h incubation time, the maximum inhibition of fluorescence showed an 80–100% effect for the chemicals tested. The EC50 after 24 h incubation were estimated to be 0.06 mg/L, 0.84 mg/L and 1.69 mg/L for paraquatdichloride, alizarine and triclosan, respectively. Discussion The results obtained with the I-PAM after 24 h for the herbicide paraquat-dichloride and the polycyclic aromatic hydrocarbon alizarine were in good accordance with median effective concentrations (EC50s) obtained by the standardized growth test for L. minor after 7 d incubation (0.09 mg/L and 0.79 mg/L for paraquat-dichloride and alizarine, respectively). Those results were in accordance with literature findings for the two chemicals. In contrast, fluorescence-based EC50 of the antimicrobial agent triclosan proved to be two orders of magnitude greater when compared to the standard growth test with 7 d incubation time (0.026 mg/L) as well as with literature findings. Conclusion Typically, aquatic macrophyte testing is very time consuming and relies on laborious experimental set-ups. The I-PAM measuring device enabled fast effect screening for the three chemicals tested. While established test systems for aquatic macrophytes need incubation times of ≥ 7 d, the I-PAM can detect inhibitory effects much earlier (24 h), even if inhibition of chemicals is not specifically associated with PSII. Thus, the fluorescence-based bioassay with the I-PAM offers a promising approach for the miniaturization and high-throughput testing of chemicals with aquatic macrophytes. For the chemical triclosan, however, the short-term effect prediction with the I-PAM has been shown to be less sensitive than with long-term bioassays, which might be due to physicochemical substance properties such as lipophilicity. Recommendations and Perspectives The results of this study show that the I-PAM represents a promising tool for decreasing the incubation times of aquatic macrophyte toxicity testing to about 24 h as a supplement to existing test batteries. The applicability of this I-PAM bioassay on emergent and submerged aquatic macrophyte species should be investigated in further studies. Regarding considerations that physicochemical properties of the tested substances might play an important role in microplate bioassays, the I-PAM bioassay should either be accompanied by evaluating physicochemical properties modeled from structural information prior to an experimental investigation, or by intensified chemical analyses to identify and determine nominal concentrations of the toxicants tested. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, PAHs and PPCPs which are often detected in the aquatic environment. Nevertheless, in order to ensure a routinely applicable measuring device, experiments with a broader range of toxicants and samples of surface and/or waste waters are necessary. ESS-Submission Editor: Dr. Markus Hecker (MHecker@Entrix.com)  相似文献   
10.
Among bioassays for evaluating various impacts of chemicalson humans and ecosystems, those based on culturedmammalian-cells can best predict acute lethal toxicity to humans. Weexpect them to be employed in the future in environmentalrisk management alongside mutagenicity tests and endocrine-disrupting activity tests. We recently developed adisposable bioassay device that immobilizes humanhepatocarcinoma cells in a small micropipette tip. Thisenables very quick (within 2 h) evaluation of acute lethaltoxicity to humans. For bioassay-based environmentalmanagement, 2 promising approaches have been demonstrated bythe US-EPA: toxicity identification evaluation (TIE) andtoxicity reduction evaluation (TRE). The Japanese Ministryof Environment has been supporting a multi-center validationproject, aimed at assembling a bioassay database. To makefull use of these resources, we present a numerical modelthat describes contribution of individual chemical toobserved toxicity. This will allow the selection of the mosteffective countermeasure to reduce the toxicity. Bioassay-based environmental risk management works retrospectively,whereas impact assessment using substance flow models andtoxicity databases works prospective. We expect that these 2approaches will exchange information, act complementarily,and work effectively in keeping our environment healthy inthe 21st century.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号