首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   6篇
  国内免费   54篇
安全科学   7篇
废物处理   1篇
环保管理   7篇
综合类   49篇
基础理论   39篇
污染及防治   5篇
  2023年   2篇
  2022年   7篇
  2021年   2篇
  2020年   1篇
  2019年   6篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   3篇
  2013年   9篇
  2012年   4篇
  2011年   12篇
  2010年   1篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1994年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
Photoactive aluminum doped ZnO(AlZnO) was synthesized by sol-gel method.After that,AlZnO photocatalyst was deposited on five carbon-based materials(CBMs) using ultrasonic route followed by solid-state mixing using ball mill.The CBMs used were poly aniline(PANI),carbon nitride(CN),carbon nanotubes(CNT),graphene(G),and carbon nanofibers(CNF).The crystal phases,elemental compositions,morphological,and optical properties of the AlZnO@CBMs composites were investigated.Experimental results revealed that two of AlZnO@CBMs composites exhibited superior bleaching efficiency(100% removal) and photocatalytic stability(three cycles) for 50 μmol/L Methylene Blue(MB) contaminated water after 60 min irradiation in visible light at pH 6.5,0.7% H_2O_2,and 5 g/L inorganic salts.Under optimum conditions,AlZnO@CBMs nanocomposites were employed for the treatment of mixed dyestuffs composed of MB,Methyl Orange(MO),Astrazone Blue FRR(BB 69),and Rhodamine B(RhB) dyes under dark,ultraviolet,visible,and direct sunlight.For mixed dyestuffs,the AlZnO@G achieved the highest dye sorption capacity(60.91 μmol dye stuffs/g) with kinetic rate 8.22 × 10~(-3) min~(-1) in 90 min via multi-layer physisorption(Freundlich isotherm) on graphene sheet.In additions,AlZnO@CN offered the highest photo-kinetic rate(K_(photo)) of~54.1 × 10~(-3) min~(-1)(93.8% after 60 min) under direct sunlight.Furthermore,the selective radical trapping experiment confirmed that the holes and oxidative superoxide radicals are crucial on dyes photodegradation pathway.Owing to their superior performance,AlZnO@G and AlZnO@CN nanocomposites can offer an effective in-situ solar-assisted adsorption/photocatalytic remediation of textile wastewater effluents.  相似文献   
2.
纳米材料在环境保护中的应用与发展   总被引:9,自引:0,他引:9  
综述了纳米材料的环保功能以及其在环境保护中的应用,并列举了近年出现的纳米环保产品,提出了纳米材料在环保应用中存在的问题。  相似文献   
3.
Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials(MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics,energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10 μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774 A.1 macrophages and lung epithelial A549 cells.Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs.Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis.Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial.  相似文献   
4.
植物对纳米颗粒的吸收、转运及毒性效应   总被引:9,自引:4,他引:5  
杨新萍  赵方杰 《环境科学》2013,34(11):4495-4502
随着工程纳米颗粒的广泛使用,这些纳米材料不可避免地进入环境,对环境造成未知影响.植物是高等生物暴露于纳米颗粒的一条主要途径,工程纳米颗粒可能通过食物链使其在高营养水平生物中积累.植物与纳米颗粒间的相互作用应该受到关注和重视.已有的文献表明纳米颗粒能被植物选择性地吸收并引起植物毒性,但纳米颗粒进入植物体内的机制仍不明确.多数关于植物吸收纳米颗粒的研究是在理想条件如水培实验下开展,并且集中在植物的种子发芽或是幼苗生长阶段.描述纳米颗粒在植物体内的生物转化和在植物体内分配的报道较少,而且这方面的机制没有阐述清楚.目前有许多研究者关注纳米颗粒的植物毒性效应,但这方面的研究需要进一步深入.  相似文献   
5.
Titania (TiO2) has been the focus of attention of researchers since the first demonstration of its capability to generate the photocatalytic splitting of water into hydrogen and oxygen. However, there seems to be a recent surge in the research activity, involving modified TiO2 nanoparticles (NP), which are considered to be more effective due to different physicochemical properties in comparison to unmodified fine particle analogs. Several strategies have been employed to modify TiO2 to reduce recombination rates of photogenerated charge carriers to enhance the optimal functioning of TiO2. Doping with cations and anions and coupling it with another semiconductor are the most well-known modification methods used. Titania nanocomposites are known to have a plethora of applications. Photoexcitation of these particles are seen to be extraordinarily effective in eliciting microbial death which makes it an attractive candidate for the manufacturing of antimicrobial coatings. On the other hand, TiO2 induces the oxidation of various organic refractory compounds like tetracycline, sulfamethazine, and bisphenol. The photo-electrocatalytic oxidation technique which amalgamates the principle of photocatalysis and electrolysis serves as a newer, unswerving, and cost effective water treatment process. In the biomedical arena, use is now acknowledged for the photodynamic therapy of cancer, cell imaging, biological sensors, drug delivery system, and as endonucleases. In the commercial front, it is utilized in creams owing to its small particle size, which facilitates absorption through skin. It is also employed as ultraviolet blocking agents in sunscreen and commonly encountered as a brilliant white pigment in paint due to its brightness, high refractive index and resistance to discoloration. Its use in solar cells has also been reported. This review aims to encompass the new progress of modified TiO2 nanocomposites for efficient applications, emphasizing the future trends of TiO2 in arenas like healthcare, environment, biomedical, food, personal care, and pharmacy and also highlights the commercial implications of this promising nanomaterial.  相似文献   
6.
王璞  赵丽红  朱小山 《环境科学》2021,42(9):4350-4357
人工纳米材料(MNMs)进入水环境将改变传统环境污染物的环境归趋及其毒性作用,两者的相互作用及其机制一直是环境科学领域的热点问题.迄今为止,已有大量MNMs与现存污染物联合毒性作用的研究成果发表,但其潜在的作用机制,尤其是联合作用下的生物响应机制仍未清楚.本文以典型MNMs——纳米二氧化钛(nTiO2)与重金属镉(Cd2+)为研究目标,以斜生栅藻(Scenedesmus obliquus)为受试生物,考察在等效剂量(毒性比1 ∶1)下不同浓度组合nTiO2和Cd2+对斜生栅藻的联合毒性作用模式及其分子机制.结果表明,等效剂量下Cd2+和nTiO2的72h EC50值对比单独暴露时均有显著升高,呈拮抗效应.进一步开展转录组学分析发现,nTiO2存在下斜生栅藻能量代谢所涉及的光合作用、叶绿素代谢以及淀粉与蔗糖代谢通路发生了显著上调,与藻细胞抗逆效应相关的精氨酸与脯氨酸代谢通路同样呈正向刺激表现.本文首次报道了nTiO2与Cd2+等效剂量联合暴露下,浮游植物通过改变藻细胞抗逆能力与加强能量代谢来降低毒性的生物响应机制.本研究结果为深入理解MNMs与现存污染物的复合环境健康效应提供重要参考和研究基础.  相似文献   
7.
One of the important components of a car to control the temperature of a car's engine is the radiator. To increase the heat absorption capacity of the coolant/fluid used in the radiator with minimum pumping power, innovative fluids called nanofluids have become the main area of research these days. Therefore, with the development of new technologies in the field of “nano-materials” and “nano-fluids,” the physical and chemical properties of coolant/fluid can be improved which in turn improves the radiator and engine efficiency, and reduces radiator weight and size. In this article, the heat transfer by forced convection in nanofluids based on Al2O3 and SiC was studied experimentally and compared to that of base fluid in an automotive radiator. The nanofluid is mixed with ethylene glycol and the fluid is prepared by the sonication method. The nanofluids were prepared by varying the nanomaterials and the amounts of nanomaterials in the base fluid and their heat transfer performance in the radiator was analyzed using ANSYS FLUENT software. Approximately 15% and 12% increase in radiator efficiency by using Al2O3 mixed nanofluid and SiC mixed nanofluid, respectively.  相似文献   
8.
以草炭、腐植酸和水为载体接种玉米联合固氮耐铵工程菌Enterobactergergoviae -7(以下简称E7)制备菌剂 ,在常温条件下放置 5dE7菌数在载体内明显增加 ,1mo后E7菌数略有下降 ,2mo后E7菌数急剧下降 ,半年后E7活菌数降至n(CFU) =5 .0× 10 6~ 93.0× 10 6g- 1 ,3种菌剂中菌数的变化趋势一致 ,E7菌数残留量 :草炭菌剂 >液体菌剂 >腐植酸菌剂 ;用草炭菌剂拌种在生长 2 0d的玉米根区 (包括根系和根际土壤 ) ,E7菌数达到最大值 ,以后E7菌数下降 ,至灌浆期玉米根际未能检测到E7;不同接种方法试验结果表明 ,以草炭菌剂拌种 +种下 2cm穴施使玉米获得最高增产率 .(表 3)  相似文献   
9.
由于大量人类活动的影响,大气CO_2浓度持续增加,其中约1/3被海洋吸收,导致表层海水pH值降低和碳酸盐平衡体系波动,即"海洋酸化"现象。污染物的海洋环境效应一直是全球环境科学领域研究的热点。在实际环境中,海洋酸化往往与污染物共同存在并作用于海洋生态系统,且海洋酸化极有可能改变污染物的海洋环境行为从而影响其毒性效应。但现有研究大多针对海洋酸化或者污染物单独作用下的毒性效应展开,对海洋酸化与污染物的联合毒性效应的研究不足、亟待加强。为此,综述了近年来海洋酸化与典型污染物(重金属、有机污染物)及新型污染物(人工纳米颗粒)的相关文献,重点阐述了海洋酸化对污染物环境行为的影响和海洋酸化与污染物对海洋生物的联合毒性效应,指出当前的研究不足,并对未来的研究方向进行了展望。  相似文献   
10.
Abstract:  Concerns have been raised regarding the potential adverse effects on biological diversity of the use of living modified organisms (LMOs, which are commonly known by similar terms such as genetically modified organisms). At the international level these concerns are addressed in part by an agreement known as the Cartagena Protocol on Biosafety and include potential toxic effects of insect-resistant crops on nontarget organisms and potential ecological effects of gene flow from modified crops, fish, microorganisms, or insects to wild species or counterparts. We reviewed the protocol's main provisions, including those dealing with risk assessment and risk management, decision making on imports, documentation accompanying shipments, and liability resulting from damages caused by LMOs. A medium-term program of work has been adopted by the parties, which includes the potential contribution of conservation biologists to delivering capacity building, developing risk assessment guidance, evaluating mechanisms of potential ecological damages from LMOs, and other issues. Conservation biologists and other experts have opportunities to influence the negotiations and implementation of the protocol by providing inputs at meetings, offering expertise to governments and organizations, and participating in or developing relevant projects and initiatives. Involvement of conservation biologists in the implementation and further development of the protocol would contribute to its effectiveness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号