首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   93篇
  国内免费   8篇
安全科学   12篇
废物处理   3篇
环保管理   7篇
综合类   24篇
基础理论   292篇
污染及防治   2篇
评价与监测   2篇
灾害及防治   7篇
  2023年   19篇
  2022年   10篇
  2021年   13篇
  2020年   22篇
  2019年   20篇
  2018年   17篇
  2017年   26篇
  2016年   17篇
  2015年   33篇
  2014年   25篇
  2013年   26篇
  2012年   28篇
  2011年   29篇
  2010年   23篇
  2009年   13篇
  2008年   7篇
  2007年   2篇
  2005年   1篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有349条查询结果,搜索用时 140 毫秒
101.
Forest degradation is arguably the greatest threat to biodiversity, ecosystem services, and rural livelihoods. Therefore, increasing understanding of how organisms respond to degradation is essential for management and conservation planning. We were motivated by the need for rapid and practical analytical tools to assess the influence of management and degradation on biodiversity and system state in areas subject to rapid environmental change. We compared bird community composition and size in managed (ejido, i.e., communally owned lands) and unmanaged (national park) forests in the Sierra Tarahumara region, Mexico, using multispecies occupancy models and data from a 2‐year breeding bird survey. Unmanaged sites had on average higher species occupancy and richness than managed sites. Most species were present in low numbers as indicated by lower values of detection and occupancy associated with logging‐induced degradation. Less than 10% of species had occupancy probabilities >0.5, and degradation had no positive effects on occupancy. The estimated metacommunity size of 125 exceeded previous estimates for the region, and sites with mature trees and uneven‐aged forest stand characteristics contained the highest species richness. Higher estimation uncertainty and decreases in richness and occupancy for all species, including habitat generalists, were associated with degraded young, even‐aged stands. Our findings show that multispecies occupancy methods provide tractable measures of biodiversity and system state and valuable decision support for landholders and managers. These techniques can be used to rapidly address gaps in biodiversity information, threats to biodiversity, and vulnerabilities of species of interest on a landscape level, even in degraded or fast‐changing environments. Moreover, such tools may be particularly relevant in the assessment of species richness and distribution in a wide array of habitats. Uso de Modelos de Ocupación para Múltiples Especies para Evaluar la Respuesta de las Comunidades de Aves a la Degradación de Bosques Asociada con la Tala  相似文献   
102.
Web‐crawling approaches, that is, automated programs data mining the internet to obtain information about a particular process, have recently been proposed for monitoring early signs of ecosystem degradation or for establishing crop calendars. However, lack of a clear conceptual and methodological framework has prevented the development of such approaches within the field of conservation biology. Our objective was to illustrate how Google Trends, a freely accessible web‐crawling engine, can be used to track changes in timing of biological processes, spatial distribution of invasive species, and level of public awareness about key conservation issues. Google Trends returns the number of internet searches that were made for a keyword in a given region of the world over a defined period. Using data retrieved online for 13 countries, we exemplify how Google Trends can be used to study the timing of biological processes, such as the seasonal recurrence of pollen release or mosquito outbreaks across a latitudinal gradient. We mapped the spatial extent of results from Google Trends for 5 invasive species in the United States and found geographic patterns in invasions that are consistent with their coarse‐grained distribution at state levels. From 2004 through 2012, Google Trends showed that the level of public interest and awareness about conservation issues related to ecosystem services, biodiversity, and climate change increased, decreased, and followed both trends, respectively. Finally, to further the development of research approaches at the interface of conservation biology, collective knowledge, and environmental management, we developed an algorithm that allows the rapid retrieval of Google Trends data.  相似文献   
103.
Anthropogenic climate change is a key threat to global biodiversity. To inform strategic actions aimed at conserving biodiversity as climate changes, conservation planners need early warning of the risks faced by different species. The IUCN Red List criteria for threatened species are widely acknowledged as useful risk assessment tools for informing conservation under constraints imposed by limited data. However, doubts have been expressed about the ability of the criteria to detect risks imposed by potentially slow‐acting threats such as climate change, particularly because criteria addressing rates of population decline are assessed over time scales as short as 10 years. We used spatially explicit stochastic population models and dynamic species distribution models projected to future climates to determine how long before extinction a species would become eligible for listing as threatened based on the IUCN Red List criteria. We focused on a short‐lived frog species (Assa darlingtoni) chosen specifically to represent potential weaknesses in the criteria to allow detailed consideration of the analytical issues and to develop an approach for wider application. The criteria were more sensitive to climate change than previously anticipated; lead times between initial listing in a threatened category and predicted extinction varied from 40 to 80 years, depending on data availability. We attributed this sensitivity primarily to the ensemble properties of the criteria that assess contrasting symptoms of extinction risk. Nevertheless, we recommend the robustness of the criteria warrants further investigation across species with contrasting life histories and patterns of decline. The adequacy of these lead times for early warning depends on practicalities of environmental policy and management, bureaucratic or political inertia, and the anticipated species response times to management actions. Detección del Riesgo de Extinción a partir del Cambio Climático por medio del Criterio de la Lista Roja de la UICNKeith et al.  相似文献   
104.
Decision makers and researchers recognize the need to effectively confront the social dimensions and conflicts inherent to invasive species research and management. Yet, despite numerous contentious situations that have arisen, no systematic evaluation of the literature has examined the commonalities in the patterns and types of these emergent social issues. Using social and ecological keywords, we reviewed trends in the social dimensions of invasive species research and management and the sources and potential solutions to problems and conflicts that arise around invasive species. We integrated components of cognitive hierarchy theory and risk perceptions theory to provide a conceptual framework to identify, distinguish, and provide understanding of the driving factors underlying disputes associated with invasive species. In the ISI Web of Science database, we found 15,915 peer‐reviewed publications on biological invasions, 124 of which included social dimensions of this phenomenon. Of these 124, 28 studies described specific contentious situations. Social approaches to biological invasions have emerged largely in the last decade and have focused on both environmental social sciences and resource management. Despite being distributed in a range of journals, these 124 articles were concentrated mostly in ecology and conservation‐oriented outlets. We found that conflicts surrounding invasive species arose based largely on differences in value systems and to a lesser extent stakeholder and decision maker's risk perceptions. To confront or avoid such situations, we suggest integrating the plurality of environmental values into invasive species research and management via structured decision making techniques, which enhance effective risk communication that promotes trust and confidence between stakeholders and decision makers. Clarificar los Valores, Percepciones de Riesgo y Actitudes para Resolver o Evitar Conflictos Sociales en el Manejo de Especies Invasoras  相似文献   
105.
Identifying which nonindigenous species will become invasive and forecasting the damage they will cause is difficult and presents a significant problem for natural resource management. Often, the data or resources necessary for ecological risk assessment are incomplete or absent, leaving environmental decision makers ill equipped to effectively manage valuable natural resources. Structured expert judgment (SEJ) is a mathematical and performance‐based method of eliciting, weighting, and aggregating expert judgments. In contrast to other methods of eliciting and aggregating expert judgments (where, for example, equal weights may be assigned to experts), SEJ weights each expert on the basis of his or her statistical accuracy and informativeness through performance measurement on a set of calibration variables. We used SEJ to forecast impacts of nonindigenous Asian carp (Hypophthalmichthys spp.) in Lake Erie, where it is believed not to be established. Experts quantified Asian carp biomass, production, and consumption and their impact on 4 fish species if Asian carp were to become established. According to experts, in Lake Erie Asian carp have the potential to achieve biomass levels that are similar to the sum of biomasses for several fishes that are harvested commercially or recreationally. However, the impact of Asian carp on the biomass of these fishes was estimated by experts to be small, relative to long term average biomasses, with little uncertainty. Impacts of Asian carp in tributaries and on recreational activities, water quality, or other species were not addressed. SEJ can be used to quantify key uncertainties of invasion biology and also provide a decision‐support tool when the necessary information for natural resource management and policy is not available. El Uso de Juicio Experto Estructurado para Predecir Invasiones de Carpas Asiáticas en el Lago Erie  相似文献   
106.
Humans influence tropical rainforest animals directly via exploitation and indirectly via habitat disturbance. Bushmeat hunting and logging occur extensively in tropical forests and have large effects on particular species. But how they alter animal diversity across landscape scales and whether their impacts are correlated across species remain less known. We used spatially widespread measurements of mammal occurrence across Malaysian Borneo and recently developed multispecies hierarchical models to assess the species richness of medium‐ to large‐bodied terrestrial mammals while accounting for imperfect detection of all species. Hunting was associated with 31% lower species richness. Moreover, hunting remained high even where richness was very low, highlighting that hunting pressure persisted even in chronically overhunted areas. Newly logged sites had 11% lower species richness than unlogged sites, but sites logged >10 years previously had richness levels similar to those in old‐growth forest. Hunting was a more serious long‐term threat than logging for 91% of primate and ungulate species. Hunting and logging impacts across species were not correlated across taxa. Negative impacts of hunting were the greatest for common mammalian species, but commonness versus rarity was not related to species‐specific impacts of logging. Direct human impacts appeared highly persistent and lead to defaunation of certain areas. These impacts were particularly severe for species of ecological importance as seed dispersers and herbivores. Indirect impacts were also strong but appeared to attenuate more rapidly than previously thought. The lack of correlation between direct and indirect impacts across species highlights that multifaceted conservation strategies may be needed for mammal conservation in tropical rainforests, Earth's most biodiverse ecosystems. Correlación y Persistencia de los Impactos de la Caza y la Tala sobre los Mamíferos de los Bosques Tropicales  相似文献   
107.
Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well‐known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well‐known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well‐known and little‐known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km2 and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km2 and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to islands. Beneficios de los Taxa Poco Estudiados para la Conservación de la Diversidad de Aves y Mamíferos en Islas  相似文献   
108.
Xishuangbanna is on the northern margins of tropical Asia in southwestern China and has the largest area of tropical forest remaining in the country. It is in the Indo‐Burma hotspot and contains 16% of China's vascular flora in <0.2% of the country's total area (19,690 km2). Rapid expansion of monoculture crops in the last 20 years, particularly rubber, threatens this region's exceptional biodiversity. To understand the effects of land‐use change and collection on orchid species diversity and determine protection priorities, we conducted systematic field surveys, observed markets, interviewed orchid collectors, and then determined the conservation status of all orchids. We identified 426 orchid species in 115 genera in Xishuangbanna: 31% of all orchid species that occur in China. Species richness was highest at 1000–1200 m elevation. Three orchid species were assessed as possibly extinct in the wild, 15 as critically endangered, 82 as endangered, 124 as vulnerable, 186 as least concern, and 16 as data deficient. Declines over 20 years in harvested species suggested over‐collection was the major threat, and utility value (i.e., medicinal or ornamental value) was significantly related to endangerment. Expansion of rubber tree plantations was less of a threat to orchids than to other taxa because only 75 orchid species (17.6%) occurred below the 1000‐m‐elevation ceiling for rubber cultivation, and most of these (46) occurred in nature reserves. However, climate change is projected to lift this ceiling to around 1300 m by 2050, and the limited area at higher elevations reduces the potential for upslope range expansion. The Xishuangbanna Tropical Botanical Garden is committed to achieving zero plant extinctions in Xishuangbanna, and orchids are a high priority. Appropriate in and ex situ conservation strategies, including new protected areas and seed banking, have been developed for every threatened orchid species and are being implemented.  相似文献   
109.
Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost‐effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio‐diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species.  相似文献   
110.
Many objectives motivate ecological restoration, including improving vegetation condition, increasing the range and abundance of threatened species, and improving species richness and diversity. Although models have been used to examine the outcomes of ecological restoration, few researchers have attempted to develop models to account for multiple, potentially competing objectives. We developed a combined state‐and‐transition, species‐distribution model to predict the effects of restoration actions on vegetation condition and extent, bird diversity, and the distribution of several bird species in southeastern Australian woodlands. The actions reflected several management objectives. We then validated the models against an independent data set and investigated how the best management decision might change when objectives were valued differently. We also used model results to identify effective restoration options for vegetation and bird species under a constrained budget. In the examples we evaluated, no one action (improving vegetation condition and extent, increasing bird diversity, or increasing the probability of occurrence for threatened species) provided the best outcome across all objectives. In agricultural lands, the optimal management actions for promoting the occurrence of the Brown Treecreeper (Climacteris picumnus), an iconic threatened species, resulted in little improvement in the extent of the vegetation and a high probability of decreased vegetation condition. This result highlights that the best management action in any situation depends on how much the different objectives are valued. In our example scenario, no management or weed control were most likely to be the best management options to satisfy multiple restoration objectives. Our approach to exploring trade‐offs in management outcomes through integrated modeling and structured decision‐support approaches has wide application for situations in which trade‐offs exist between competing conservation objectives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号