首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   9篇
安全科学   2篇
环保管理   1篇
综合类   13篇
基础理论   5篇
污染及防治   6篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
21.
Little is known about the mixed fungal synthesis of high-value aliphatics derived from the metabolism of simple and complex carbon substrates. Trichoderma koningii and Penicillium janthinellum were fed with undecanoic acid (UDA), potatoe dextrose broth (PDB), and their mixture. Pyrolysis Field Ionization Mass Spectrometry (Py-FIMS) together with 1H and 13C Nuclear Magnetic Resonance (NMR) characterized CHCl3 soluble aliphatics in the fungal cell culture. Data from NMR and Py-FIMS analysis were complementary to each other. On average, the mixed fungal species produced mostly fatty acids (28% of total ion intensity, TII) > alkanes (2% of TII) > n-diols (2% of TII) > and alkyl esters (0.8% of TII) when fed with UDA, PDB or UDA+PDB. The cell culture accumulated aliphatics extracellularly, although most of the identified compounds accumulated intracellularly. The mixed fungal culture produced high-value chemicals from the metabolic conversion of simple and complex carbon substrates.  相似文献   
22.
The polyfluorinated carboxylic acids 5:3 acid (C5F11CH2CH2CO2H) and 7:3 acid (C7F15CH2CH2CO2H) are major products from 6:2 FTOH (C6F13CH2CH2OH) and 8:2 FTOH (C8F17CH2CH2OH) aerobic biotransformation, respectively. The 5:3 and 7:3 acids were dosed into domestic WWTP activated sludge for 90 d to determine their biodegradability. The 7:3 acid aerobic biodegradability was low, only 1.7 mol% conversion to perfluoroheptanoic acid (PFHpA), whereas no transformation was observed previously in soil. In stark contrast, 5:3 acid aerobic biodegradability was enhanced 10 times in activated sludge compared to soil. The 5:3 acid was not activated by acyl CoEnzyme A (CoA) synthetase, a key step required for further α- or ß-oxidation. Instead, 5:3 acid was directly converted to 4:3 acid (C4F9CH2CH2CO2H, 14.2 mol%) and 3:3 acid (C3F7CH2CH2CO2H, 0.9 mol%) via “one-carbon removal pathways”. The 5:3 acid biotransformation also yielded perfluoropentanoic acid (PFPeA, 5.9 mol%) and perfluorobutanoic acid (PFBA, 0.8 mol%). This is the first report to identify key biotransformation intermediates which demonstrate novel one-carbon removal pathways with sequential removal of CF2 groups. Identified biotransformation intermediates (10.2 mol% in sum) were 5:3 Uacid, α-OH 5:3 acid, 5:2 acid, and 5:2 Uacid. The 5:2 Uacid and 5:2 acid are novel intermediates identified for the first time which confirm the proposed pathways. In the biodegradation pathways, the genesis of the one carbon removal is CO2 elimination from α-OH 5:3 acid. These results suggest that there are enzymatic mechanisms available in the environment that can lead to 6:2 FTOH and 5:3 acid mineralization. The dehydrogenation from 5:3 acid to 5:3 Uacid was the rate-limiting enzymatic step for 5:3 acid conversion to 4:3 acid.  相似文献   
23.
以虾夷扇贝(Patinopecten yessoensis)为受试生物,研究了8:2氟调聚羧酸(8:2FTCA)在虾夷扇贝不同组织(肝脏、鳃、性腺、外套膜、闭壳肌)中的蓄积、分布和生物转化特征.结果显示,8:2FTCA蓄积浓度最高的组织为肝脏,达峰值最快的组织为鳃.在8:2FTCA代谢过程中,检测到8:2氟调聚不饱和酸(8:2FTUCA)、7:3氟调聚羧酸(7:3FTCA)、全氟辛酸(PFOA)、全氟壬酸(PFNA)和全氟庚酸(PFHpA)5种代谢产物,其中7:3FTCA和PFOA为含量最丰富的2种代谢产物.它们主要分布在鳃和肝脏组织中,鳃和肝脏是8:2FTCA进行生物转化的主要器官,并且鳃组织中代谢产物的浓度最高.推测出虾夷扇贝体内8:2FTCA的生物转化路径,与虹鳟的生物转化行为相比,虾夷扇贝在代谢产物产量和半衰期上均有差异,说明水生生物的生物转化行为具有物种差异性.8:2FTCA在虾夷扇贝体内可转化为PFOA、PFNA和PFHpA等全氟烷基羧酸(PFCAs),是虾夷扇贝体内PFCAs的一个间接来源.  相似文献   
24.
Background, Aims and Scope In oil spill investigations, one of the most important steps is a proper choice of approaches that imply an investigation of samples taken from different sedimentary environments, samples of oil contaminants taken in different periods of time and samples taken at different distances from the oil spill. In all these cases, conclusion on the influence of the environment, microorganisms or migration on the oil contaminants' composition can be drawn from the comparison of chemical compositions of the investigated contaminants. However, in case of water contaminants, it is very important to define which part of organic matter has been analyzed. Namely, previous investigations showed that there were some differences in chemical composition of the same oil contaminant depending on the intensity of its contact with ground water. The aim of this work is to define more precisely the interactions between oil contaminant and water, i.e. the influence of the intensity of interaction between the oil contaminant and water on its chemical composition. The study was based on a comparison of four fractionated extracts of an oil pollutant, after they had been analyzed in details. Methods Oil polluted surface water (wastewater canal, Pančevo, Serbia) was investigated. The study was based on a comparison of four extracts of an oil contaminant: extract 1 (decanted part), and extracts 2, 3 and 4 (extracted by shaking for 1 minute, 5 minutes and 24 hours, respectively). The fractionated extracts were saponified with a solution of KOH in methanol, and neutralized with 10% hydrochloric acid. The products were dissolved in a mixture of dichloromethane and hexane, and individually fractionated by column chromatography on alumina and silica gel (saturated hydrocarbon, aromatic, alcohol and fatty acid fractions). n-Alkanes and isoprenoid aliphatic alkanes, polycyclic alkanes of sterane and triterpane types, alcohols and fatty acids were analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). δ13CPDB values of individual n-alkanes in the aliphatic fractions were determined using gas chromatography-isotope ratio monitoring-mass spectrometry (GC-irmMS). Results and discussion. Extracts 1 and 2 are characterized by uniform distribution of n-alkanes, whereas extract 3 is characterized by an even-numbered members dominating the odd-ones, and extract 4 showed a bimodal distribution. Extract 1 is characterized by the least negative δ13CPDB values of C19-C26 n-alkanes. Sterane and triterpane analysis confirmed that all extracts originated from the same oil contaminant. n-Fatty acids, C19-C24, in all extracts are very low, being somewhat higher in extract 4. Even-numbered n-alcohols, C12–C16, were identified in the highest concentration in extract 3. It was assumed that algae were responsible for the composition of extract 3. Furthermore, a possible reason for higher concentrations of C19–C26 n-alkanes and C19–C24 fatty acids in extract 4 is the formation of inclusion compounds with colloidal micelles formed between the oil contaminant's NSO-compounds and water. Conclusion It was undoubtedly confirmed that there were specific differences in the compositions of the different extracts depending on the intensity of the interaction between the oil contaminant and the surface water. Recommendation and Outlook. When comparing the composition of oil contaminants from different water samples (regardless of the ultimate investigation goal) it is necessary to compare the extracts isolated under the same conditions, in other words, extracts that were in the same or very similar interaction with water.  相似文献   
25.
Several household consumer products were analyzed for their content of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and fluorotelomer alcohols (FTOH) by nanoflow ultra performance liquid chromatography – mass spectrometry and gas chromatography – mass spectrometry. Among the investigated products, which are applied as sprays, were impregnating agents, cleaning agents, lubricants, and conditioners. In 14 of the 26 products analyzed, at least one polyfluorinated compound (PFC) was detected in 14 samples. 8?:?2 FTOH was the dominating PFC with concentrations up to 149?µg?mL?1. The maximum concentration of PFOA was 14.5?µg?mL?1, whereas PFOS was not detected in any sample. Investigated PFCs were mostly found in impregnating agents and lubricants, but were not detected in cleaning agents and conditioners. In FTOH-containing impregnating agents, similar ratios between 6?:?2 FTOH, 8?:?2 FTOH, and 10?:?2 FTOH were found. FTOH proportions in PFC-containing lubricants were similar as well. Total human exposure to PFC from consumer product aerosols for three different scenarios was estimated to be between 42.8 and 464?ng?kg?1?per day.  相似文献   
26.

The biodegradation of 2‐halosubstituted and 4‐halosubstituted benzyl alcohols was studied using two sources of biodegrative micro‐organisms: mixed culture from the ?TUDA waste water treatment plant, Dom?ale, and the white rot fungus Phanerochaete chrysosporium strain MZKI B‐223 (ATCC 24725). The results obtained by this study indicate the interrelationship between the types of micro‐organism used in the experiments and the type and position of the halogen element on the aromatic ring.  相似文献   
27.
不同生物质燃烧排放多环芳烃及糖醇类化合物的模拟研究   总被引:2,自引:1,他引:1  
黄帅  黄欣怡  吴水平  胡清华  陈晓秋 《环境科学》2015,36(10):3573-3581
选择水稻、小麦、玉米及棉花秸秆与马尾松枝,采集模拟燃烧时排放的PM2.5,分析PM2.5中多环芳烃(PAHs)和糖醇类化合物的含量,获得PM2.5及负载的两类化合物的排放因子;采用500 W汞灯直接照射收集了PM2.5的尘膜,获得了中、高环PAHs及左旋葡聚糖的光解动力学.结果表明,PM2.5的排放因子介于(2.26±0.60)g·kg-1(马尾松枝)~(14.33±5.26)g·kg-1(玉米秸秆)之间;19种PAHs的排放因子介于(0.82±0.21)mg·kg-1(马尾松枝)~(11.14±5.69)mg·kg-1(棉花秸秆)之间,且以4环类PAHs所占比例最高,介于51%~71%之间(其中马尾松枝燃烧时惹烯的排放因子最大);9种糖醇类化合物的排放因子范围为(52.34±50.16)mg·kg-1(水稻秸秆)~(238.81±33.62)mg·kg-1(小麦秸秆),且都以左旋葡聚糖占绝对优势(72%~96%).光照模拟显示,目标化合物的光照损失都遵循拟一级动力学,其中≥4环的PAHs的光解速率常数随着尘膜中PAHs的负载量增大而减小,来源特征比值Flua/(Flua+Py)和Ip/(Ip+Bg P)相对稳定,而左旋葡聚糖的光解速率常数为0.004 5 min-1,与苯并[a]蒽的光解速率常数(0.004 1~0.005 0 min-1)接近.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号