首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   10篇
  国内免费   3篇
安全科学   2篇
环保管理   3篇
综合类   15篇
基础理论   44篇
污染及防治   4篇
评价与监测   1篇
社会与环境   2篇
  2023年   3篇
  2022年   4篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1995年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
11.
In this research a closed loop supply chain is designed which incorporates reverse logistics and forward logistic system simultaneously. In the design of reverse logistic system, recovery options are embedded in traditional supply chain for treating returned products. The recovery system includes collection centres, remanufacturing plants and disposal centres. Since the product return is supply driven, there is an uncertainty about it. In the proposed configuration for closed loop supply chain, the optimised configuration for supply chain in terms of locating recovery plants is developed. Accordingly, a fuzzy mixed integer linear programming model develops to deal with the uncertainty of returning products by customers. A general-purpose solver (LINGO 8.0) and a Meta heuristic approach (genetics algorithm) are implemented to solve the proposed model. The answers are compared by defining indexes and then the optimal answer, configuration and variables are identified. This solution will suggest a new design of supply chain network in which waste of materials is minimised and the new raw materials are necessary only when the used products may not be recovered by recovery options.  相似文献   
12.
石杉科植物因所含石杉碱甲(Huperzine A)对中老年痴呆等具有良好疗效,近年来倍受关注.利用AFLP分子标记对武夷山脉广布种长柄石杉[Huperzia serrata(Thunb.ex Murray)Trev.var.longipetiolata(Spring)H.M.Chang]7个居群112株个体进行遗传多样性和居群遗传结构分析.选用多态性高、分辨力强的8对选择性扩增引物组合共获得675个位点,其中多态位点比例为69.38%.居群内观测等位基因数(Na)为1.633,有效等位基因数(Ne)1.493;Nei’s基因多样性指数(He)与Shannon多态性信息指数(I)的平均值分别为0.272和0.392,多样性最高为地处武夷山脉中段的泰宁居群和建宁居群,最低为山脉北段的光泽居群.居群总基因多样性(Ht)为0.327 3,居群内基因多样性(Hs)为0.272 2,居群间的遗传分化系数(Gst)为0.168 1,表明居群内变异是长柄石杉遗传多样性的主要来源.由Gst估计,武夷山脉长柄石杉自然居群的基因流(Nm)为2.474 0.邻接树分析表明居群间遗传亲缘关系与地理位置相关.武夷山脉长柄石杉较高的遗传多样性和基因流水平表明其仍然具有相当的适应(生存)能力和进化潜力,这可能与其生物学(异交水平)、生态学特性及武夷山脉相对良好的生境条件有关.  相似文献   
13.
Neutral models provide an alternative to niche-based assembly rules of ecological communities by assuming that communities’ properties are shaped by the stochastic interplay between ecological drift, migration and speciation. The recent and ongoing interest about neutral assumptions has produced many developments on the theoretical side, with nevertheless limited echoes in terms of analyses of real-world data. The present review paper aims to help bridge the widening gap between modellers and field ecologists through two objectives. First, to provide a multi-criteria typology of the main neutral models, including those from population genetics that have not yet been transposed to ecology, by considering how the fundamental processes of ecological drift, speciation and migration are modelled and, specifically, how space is taken into account. Second, to review methods recently proposed to estimate models parameters from field data, a point that should be mastered to allow for broader applications.  相似文献   
14.
硝基芳香化合物是环境中难降解的有机污染物之一 ,对环境的污染日益严重 ,利用生物技术对这类有机物进行降解是行之有效的新途径。针对几种单环硝基芳香化合物好氧降解的微生物、降解途径以及降解过程中的主要酶、降解性质粒、基因定位等分子遗传学的研究进展进行了综述  相似文献   
15.
Migratory animals are declining worldwide and coordinated conservation efforts are needed to reverse current trends. We devised a novel genoscape-network model that combines genetic analyses with species distribution modeling and demographic data to overcome challenges with conceptualizing alternative risk factors in migratory species across their full annual cycle. We applied our method to the long distance, Neotropical migratory bird, Wilson's Warbler (Cardellina pusilla). Despite a lack of data from some wintering locations, we demonstrated how the results can be used to help prioritize conservation of breeding and wintering areas. For example, we showed that when genetic, demographic, and network modeling results were considered together it became clear that conservation recommendations will differ depending on whether the goal is to preserve unique genetic lineages or the largest number of birds per unit area. More specifically, if preservation of genetic lineages is the goal, then limited resources should be focused on preserving habitat in the California Sierra, Basin Rockies, or Coastal California, where the 3 most vulnerable genetic lineages breed, or in western Mexico, where 2 of the 3 most vulnerable lineages overwinter. Alternatively, if preservation of the largest number of individuals per unit area is the goal, then limited conservation dollars should be placed in the Pacific Northwest or Central America, where densities are estimated to be the highest. Overall, our results demonstrated the utility of adopting a genetically based network model for integrating multiple types of data across vast geographic scales and better inform conservation decision-making for migratory animals.  相似文献   
16.
There have been numerous reports of genetic influences on division of labor in honey bee colonies, but the effects of worker genotypic diversity on colony behavior are unclear. We analyzed the effects of worker genotypic diversity on the phenotypes of honey bee colonies during a critical phase of colony development, the nest initiation phase. Five groups of colonies were studied (n = 5–11 per group); four groups had relatively low genotypic diversity compared to the fifth group. Colonies were derived from queens that were instrumentally inseminated with the semen of four different drones according to one of the following mating schemes: group A, 4 A-source drones; group B, 4 B-source drones; group C, 4 C-source drones; group D, 4 D-source drones; and group E, 1 drone of each of the A-D drone sources. There were significant differences between colonies in groups A-D for 8 out of 19 colony traits. Because the queens in all of these colonies were super sisters, the observed differences between groups were primarily a consequence of differences in worker genotypes. There were very few differences (2 out of 19 traits) between colonies with high worker genotypic diversity (group E) and those with low diversity (groups A-D combined). This is because colonies with greater diversity tended to have phenotypes that were average relative to colonies with low genotypic diversity. We hypothesize that the averaging effect of genotypic variability on colony phenotypes may have selective advantages, making colonies less likely to fail because of inappropriate colony responses to changing environmental conditions.  相似文献   
17.
Current rates of climate change require organisms to respond through migration, phenotypic plasticity, or genetic changes via adaptation. We focused on questions regarding species’ and populations’ ability to respond to climate change through adaptation. Specifically, the role adaptive introgression, movement of genetic material from the genome of 1 species into the genome of another through repeated interbreeding, may play in increasing species’ ability to respond to a changing climate. Such interspecific gene flow may mediate extinction risk or consequences of limited adaptive potential that result from standing genetic variation and mutation alone, enabling a quicker demographic recovery in response to changing environments. Despite the near dismissal of the potential benefits of hybridization by conservation practitioners, we examined a number of case studies across different taxa that suggest gene flow between sympatric or parapatric sister species or within species that exhibit strong ecotypic differentiation may represent an underutilized management option to conserve evolutionary potential in a changing environment. This will be particularly true where advanced‐generation hybrids exhibit adaptive traits outside the parental phenotypic range, a phenomenon known as transgressive segregation. The ideas presented in this essay are meant to provoke discussion regarding how we maintain evolutionary potential, the conservation value of natural hybrid zones, and consideration of their important role in adaptation to climate.  相似文献   
18.
Abstract: The developing field of community genetics has the potential to broaden the contribution of genetics to conservation biology by demonstrating that genetic variation within foundation plant species can act to structure associated communities of microorganisms, invertebrates, and vertebrates. We assessed the biodiversity consequences of natural patterns of intraspecific genetic variation within the widely distributed Australian forest tree, Eucalyptus globulus. We assessed genetic variation among geographic races of E. globulus (i.e., provenances, seed zones) in the characteristics of tree‐trunk bark in a 17‐year‐old common garden and the associated response of a dependent macroarthropod community. In total, 180 macroarthropod taxa were identified following a collection from 100 trees of five races. We found substantial genetically based variation within E. globulus in the quantity and type of decorticating bark. In the community of organisms associated with this bark, significant variation existed among trees of different races in composition, and there was a two‐fold difference in species richness (7–14 species) and abundance (22–55 individuals) among races. This community variation was tightly linked with genetically based variation in bark, with 60% of variation in community composition driven by bark characteristics. No detectable correlation was found, however, with neutral molecular markers. These community‐level effects of tree genetics are expected to extend to higher trophic levels because of the extensive use of tree trunks as foraging zones by birds and marsupials. Our results demonstrate the potential biodiversity benefits that may be gained through conservation of intraspecific genetic variation within broadly distributed foundation species. The opportunities for enhancing biodiversity values of forestry and restoration plantings are also highlighted because such planted forests are increasingly becoming the dominant forest type in many areas of the world.  相似文献   
19.
20.
The Paradox of Forest Fragmentation Genetics   总被引:5,自引:0,他引:5  
Abstract:  Theory predicts widespread loss of genetic diversity from drift and inbreeding in trees subjected to habitat fragmentation, yet empirical support of this theory is scarce. We argue that population genetics theory may be misapplied in light of ecological realities that, when recognized, require scrutiny of underlying evolutionary assumptions. One ecological reality is that fragment boundaries often do not represent boundaries for mating populations of trees that benefit from long-distance pollination, sometimes abetted by long-distance seed dispersal. Where fragments do not delineate populations, genetic theory of small populations does not apply. Even in spatially isolated populations, where genetic theory may eventually apply, evolutionary arguments assume that samples from fragmented populations represent trees that have had sufficient time to experience drift, inbreeding, and ultimately inbreeding depression, an unwarranted assumption where stands in fragments are living relicts of largely unrelated predisturbance populations. Genetic degradation may not be as important as ecological degradation for many decades following habitat fragmentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号