首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   24篇
基础理论   97篇
  2023年   7篇
  2022年   9篇
  2021年   11篇
  2020年   8篇
  2019年   8篇
  2018年   9篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
81.
Ocean acidification is a substantial emergent threat to marine biodiversity and the goods and services it provides. Although efforts to address ocean acidification have been taken under the Convention on Biological Diversity (CBD), a far greater potential to do so exists by finding synergies between biodiversity conservation efforts and ocean acidification action. The ongoing process to develop a post-2020 global biodiversity framework offers an opportunity to ensure that opportunities for addressing ocean acidification are capitalized on and not overlooked. I argue that to achieve this, the following are needed: a technical integration of ocean acidification across the targets to be included in the post-2020 framework and a reframing of the issue as a biodiversity problem so as to highlight the synergies between existing biodiversity work and action needed to address ocean acidification. Given that the post-2020 framework is intended to establish the global biodiversity agenda for the coming decades, integration of ocean acidification will set a precedent for the other biodiversity-related conventions and encourage greater uptake of the issue across the wider international community. My approach is of direct relevance to those participating in the negotiations, both from a CBD Party perspective and the perspective of those advocating for a strong outcome to protect marine biodiversity and marine socioecological systems. My discussion of framing is relevant to those working beyond the CBD within other biodiversity-related conventions in which goals to address ocean acidification are sorely lacking.  相似文献   
82.
A critical decision in species conservation is whether to target individual species or a complex of ecologically similar species. Management of multispecies complexes is likely to be most effective when species share similar distributions, threats, and response to threats. We used niche overlap analysis to assess ecological similarity of 3 sensitive desert fish species currently managed as an ecological complex. We measured the amount of shared distribution of multiple habitat and life history parameters between each pair of species. Habitat use and multiple life history parameters, including maximum body length, spawning temperature, and longevity, differed significantly among the 3 species. The differences in habitat use and life history parameters among the species suggest they are likely to respond differently to similar threats and that most management actions will not benefit all 3 species equally. Habitat restoration, frequency of stream dewatering, non‐native species control, and management efforts in tributaries versus main stem rivers are all likely to impact each of the species differently. Our results demonstrate that niche overlap analysis provides a powerful tool for assessing the likely effectiveness of multispecies versus single‐species conservation plans. Evaluación de la Posible Efectividad del Manejo Multi‐Especie paraPeces de Desierto en Peligro Mediante el Análisis de Traslape de Nichos  相似文献   
83.
The increasing alienation of people from nature is profoundly concerning because people's interactions with nature affect well-being, affinity for nature, and support of biodiversity conservation. Efforts to restore or enhance people's interactions with nature are, therefore, important to ensure sustainable human and wildlife communities, but little is known about how this can be achieved. A key factor that shapes the way people interact with nature is their affinity for nature (often measured as nature relatedness [NR]). We explored how using cues to experience nature as a means to induce NR situationally can influence the quality of people's nature interactions on visits to green spaces and their positive affect after the visit. Cues to experience are cues that guide individuals on how to interact with nature. We surveyed 1023 visitors to a nature reserve to examine the relationships between trait (i.e., stable and long-lasting) and state (i.e., temporary, brief) NR, the quality of nature interactions, and positive affect. We also conducted a controlled experiment in which 303 participants spent 30 min outdoors on campus and reported the quality of their nature interactions and positive affect. Participants were randomly assigned to 1 of 9 cues-to-experience experimental groups (e.g., smell flowers, observe wildlife, turn off your phone) that differed in the psychological distance from nature that they prompted. Participants who received cues of close psychological distance from nature (e.g., smell and touch natural elements) interacted 3 to 4 times more with nature and reported 0.2 more positive affect than other participants. Our results demonstrate that providing cues to experience nature, which bring people closer to nature and potentially induce state NR, can enhance the quality of people's nature interactions and their positive affect. These results highlight the role of NR in high-quality nature interactions and suggest the use of cues to experience as a promising avenue for inducing state NR and promoting meaningful interactions with biodiversity, thus, reconciling conservation and well-being objectives.  相似文献   
84.
Conservation efforts are often motivated by the threat of global extinction. Yet if conservationists had more information suggesting that extirpation of individual species could lead to undesirable ecological effects, they might more frequently attempt to protect or restore such species across their ranges even if they were not globally endangered. Scientists have seldom measured or quantitatively predicted the functional consequences of species loss, even for large, extinction‐prone species that theory suggests should be functionally unique. We measured the contribution of Asian elephants (Elephas maximus) to the dispersal of 3 large‐fruited species in a disturbed tropical moist forest and predicted the extent to which alternative dispersers could compensate for elephants in their absence. We created an empirical probability model with data on frugivory and seed dispersal from Buxa Tiger Reserve, India. These data were used to estimate the proportion of seeds consumed by elephants and other frugivores that survive handling and density‐dependent processes (Janzen‐Connell effects and conspecific intradung competition) and germinate. Without compensation, the number of seeds dispersed and surviving density‐dependent effects decreased 26% (Artocarpus chaplasha), 42% (Careya arborea), and 72% (Dillenia indica) when elephants were absent from the ecosystem. Compensatory fruit removal by other animals substantially ameliorated these losses. For instance, reductions in successful dispersal of D. indica were as low as 23% when gaur (Bos gaurus) persisted, but median dispersal distance still declined from 30% (C. arborea) to 90% (A. chaplasha) without elephants. Our results support the theory that the largest animal species in an ecosystem have nonredundant ecological functionality and that their extirpation is likely to lead to the deterioration of ecosystem processes such as seed dispersal. This effect is likely accentuated by the overall defaunation of many tropical systems.  相似文献   
85.
The threatened Marsh Grassbird (Locustella pryeri) first appeared in the salt marsh in east China after the salt marsh was invaded by cordgrass (Spartina alterniflora), a non‐native invasive species. To understand the dependence of non‐native Marsh Grassbird on the non‐native cordgrass, we quantified habitat use, food source, and reproductive success of the Marsh Grassbird at the Chongming Dongtan (CMDT) salt marsh. In the breeding season, we used point counts and radio‐tracking to determine habitat use by Marsh Grassbirds. We analyzed basal food sources of the Marsh Grassbirds by comparing the δ13C isotope signatures of feather and fecal samples of birds with those of local plants. We monitored the nests through the breeding season and determined the breeding success of the Marsh Grassbirds at CMDT. Density of Marsh Grassbirds was higher where cordgrass occurred than in areas of native reed (Phragmites australis) monoculture. The breeding territory of the Marsh Grassbird was composed mainly of cordgrass stands, and nests were built exclusively against cordgrass stems. Cordgrass was the major primary producer at the base of the Marsh Grassbird food chain. Breeding success of the Marsh Grassbird at CMDT was similar to breeding success within its native range. Our results suggest non‐native cordgrass provides essential habitat and food for breeding Marsh Grassbirds at CMDT and that the increase in Marsh Grassbird abundance may reflect the rapid spread of cordgrass in the coastal regions of east China. Our study provides an example of how a primary invader (i.e., cordgrass) can alter an ecosystem and thus facilitate colonization by a second non‐native species. Efectos de Spartina alterniflora Invasora Sobre Locustella pryeri en un Área Donde No Es Nativa  相似文献   
86.
Abstract: Globally, ecosystems are under increasing anthropogenic pressure; thus, many are at risk of elimination. This situation has led the International Union for Conservation of Nature (IUCN) to propose a quantitative approach to ecosystem‐risk assessment. However, there is a need for their proposed criteria to be evaluated through practical examples spanning a diverse range of ecosystems and scales. We applied the IUCN's ecosystem red‐list criteria, which are based on changes in extent of ecosystems and reductions in ecosystem processes, to New Zealand's 72 naturally uncommon ecosystems. We aimed to test the applicability of the proposed criteria to ecosystems that are naturally uncommon (i.e., those that would naturally occur over a small area in the absence of human activity) and to provide information on the probability of ecosystem elimination so that conservation priorities might be set. We also tested the hypothesis that naturally uncommon ecosystems classified as threatened on the basis of IUCN Red List criteria contain more threatened plant species than those classified as nonthreatened. We identified 18 critically endangered, 17 endangered, and 10 vulnerable ecosystems. We estimated that naturally uncommon ecosystems contained 145 (85%) of mainland New Zealand's taxonomically distinct nationally critical, nationally endangered, and nationally vulnerable plant species, 66 (46%) of which were endemic to naturally uncommon ecosystems. We estimated there was a greater number of threatened plant species (per unit area) in critically endangered ecosystems than in ecosystems classified as nonthreatened. With their high levels of endemism and rapid and relatively well‐documented history of anthropogenic change, New Zealand's naturally uncommon ecosystems provide an excellent case‐study for the ongoing development of international criteria for threatened ecosystems. We suggest that interactions and synergies among decline in area, decline in function, and the scale of application of the criteria be used to improve the IUCN criteria for threatened ecosystems.  相似文献   
87.
Short‐term surveys are useful in conservation of species if they can be used to reliably predict the long‐term fate of populations. However, statistical evaluations of reliability are rare. We studied how well short‐term demographic data (1999–2002) of tartar catchfly (Silene tatarica), a perennial riparian plant, projected the fate and growth of 23 populations of this species up to the year 2010. Surveyed populations occurred along a river with natural flood dynamics and along a regulated river. Riparian plant populations are affected by flooding, which maintains unvegetated shores, while forest succession proceeds in areas with little flooding. Flooding is less severe along the regulated river, and vegetation overgrowth reduces abundance of tartar catchfly on unvegetated shores. We built matrix models to calculate population growth rates and estimated times to population extinction in natural and in regulated rivers, 13 and 10 populations, respectively. Models predicted population survival well (model predictions matched observed survival in 91% of populations) and accurately predicted abundance increases and decreases in 65% of populations. The observed and projected population growth rates differed significantly in all but 3 populations. In most cases, the model overestimated population growth. Model predictions did not improve when data from more years were used (1999–2006). In the regulated river, the poorest model predictions occurred in areas where cover of other plant species changed the fastest. Although vegetation cover increased in most populations, it decreased in 4 populations along the natural river. Our results highlight the need to combine disturbance and succession dynamics in demographic models and the importance of habitat management for species survival along regulated rivers. Precisión de Datos Demográficos de Corto Plazo en la Proyección del Destino de Poblaciones a Largo Plazo  相似文献   
88.
Present biodiversity comprises the evolutionary heritage of Earth's epochs. Lineages from particular epochs are often found in particular habitats, but whether current habitat decline threatens the heritage from particular epochs is unknown. We hypothesized that within a given region, humans threaten specifically habitats that harbor lineages from a particular geological epoch. We expect so because humans threaten environments that dominated and lineages that diversified during these epochs. We devised a new approach to quantify, per habitat type, diversification of lineages from different epochs. For Netherlands, one of the floristically and ecologically best-studied regions, we quantified the decline of habitat types and species in the past century. We defined habitat types based on vegetation classification and used existing ranking of decline of vegetation classes and species. Currently, most declining habitat types and the group of red-listed species are characterized by increased diversification of lineages dating back to Paleogene, specifically to Paleocene-Eocene and Oligocene. Among vulnerable habitat types with large representation of lineages from these epochs were sublittoral and eulittoral zones of temperate seas and 2 types of nutrient-poor, open habitats. These losses of evolutionary heritage would go unnoticed with classical measures of evolutionary diversity. Loss of heritage from Paleocene-Eocene became unrelated to decline once low competition, shade tolerance, and low proportion of non-Apiaceae were accounted for, suggesting that these variables explain the loss of heritage from Paleocene-Eocene. Losses of heritage from Oligocene were partly explained by decline of habitat types occupied by weak competitors and shade-tolerant species. Our results suggest a so-far unappreciated human threat to evolutionary heritage: habitat decline threatens descendants from particular epochs. If the trends persist into the future uncontrolled, there may be no habitats within the region for many descendants of evolutionary ancient epochs, such as Paleogene.  相似文献   
89.
Abstract: We combined ethnographic investigations with repeated ecological transect surveys in the Dzanga‐Sangha Dense Forest Reserve (RDS), Central African Republic, to elucidate consequences of intensifying mixed use of forests. We devised a framework for transvaluation of wildlife species, which means the valuing of species on the basis of their ecological, economic, and symbolic roles in human lives. We measured responses to hunting, tourism, and conservation of two transvalued species in RDS: elephants (Loxodonta cyclotis) and gorillas (Gorilla gorilla). Our methods included collecting data on encounter rates and habitat use on line transects. We recorded cross‐cultural variation in ideas about and interactions with these species during participant observation of hunting and tourism encounters and ethnographic interviews with hunters, conservation staff, researchers, and tourists. Ecologically, gorillas used human‐modified landscapes successfully, and elephants were more vulnerable than gorillas to hunting. Economically, tourism and encounters with elephants and gorillas generated revenues and other benefits for local participants. Symbolically, transvaluation of species seemed to undergird competing institutions of forest management that could prove unsustainable. Nevertheless, transvaluation may also offer alternatives to existing social hierarchies, thereby integrating local and transnational support for conservation measures. The study of transvaluation requires attention to transnational flows of ideas and resources because they influence transspecies interactions. Cross‐disciplinary in nature, transvalution of species addresses the political and economic challenges to conservation because it recognizes the varied human communities that shape the survival of wildlife in a given site. Transvaluation of species could foster more socially inclusive management and monitoring approaches attuned to competing economic demands, specific species behaviors, and human practices at local scales.  相似文献   
90.
We examined features of citizen science that influence data quality, inferential power, and usefulness in ecology. As background context for our examination, we considered topics such as ecological sampling (probability based, purposive, opportunistic), linkage between sampling technique and statistical inference (design based, model based), and scientific paradigms (confirmatory, exploratory). We distinguished several types of citizen science investigations, from intensive research with rigorous protocols targeting clearly articulated questions to mass-participation internet-based projects with opportunistic data collection lacking sampling design, and examined overarching objectives, design, analysis, volunteer training, and performance. We identified key features that influence data quality: project objectives, design and analysis, and volunteer training and performance. Projects with good designs, trained volunteers, and professional oversight can meet statistical criteria to produce high-quality data with strong inferential power and therefore are well suited for ecological research objectives. Projects with opportunistic data collection, little or no sampling design, and minimal volunteer training are better suited for general objectives related to public education or data exploration because reliable statistical estimation can be difficult or impossible. In some cases, statistically robust analytical methods, external data, or both may increase the inferential power of certain opportunistically collected data. Ecological management, especially by government agencies, frequently requires data suitable for reliable inference. With standardized protocols, state-of-the-art analytical methods, and well-supervised programs, citizen science can make valuable contributions to conservation by increasing the scope of species monitoring efforts. Data quality can be improved by adhering to basic principles of data collection and analysis, designing studies to provide the data quality required, and including suitable statistical expertise, thereby strengthening the science aspect of citizen science and enhancing acceptance by the scientific community and decision makers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号