全文获取类型
收费全文 | 139篇 |
免费 | 17篇 |
国内免费 | 101篇 |
专业分类
安全科学 | 5篇 |
废物处理 | 7篇 |
环保管理 | 5篇 |
综合类 | 103篇 |
基础理论 | 84篇 |
污染及防治 | 50篇 |
评价与监测 | 2篇 |
社会与环境 | 1篇 |
出版年
2023年 | 1篇 |
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 3篇 |
2018年 | 4篇 |
2017年 | 4篇 |
2016年 | 5篇 |
2015年 | 8篇 |
2014年 | 9篇 |
2013年 | 46篇 |
2012年 | 17篇 |
2011年 | 16篇 |
2010年 | 10篇 |
2009年 | 14篇 |
2008年 | 13篇 |
2007年 | 18篇 |
2006年 | 9篇 |
2005年 | 19篇 |
2004年 | 5篇 |
2003年 | 14篇 |
2002年 | 6篇 |
2001年 | 5篇 |
2000年 | 6篇 |
1999年 | 2篇 |
1998年 | 5篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 3篇 |
1990年 | 4篇 |
排序方式: 共有257条查询结果,搜索用时 15 毫秒
31.
酚类雌激素酶催化降解性的QSAR分析 总被引:1,自引:0,他引:1
以分子电性距离矢量(MEDV-13)和原子类型电拓扑状态指数(ETSI)2种分子结构描述符,分别有效表征了15个酚类雌性激素的分子结构,应用基于预测的变量选择与模型化(VSMP)方法分别建立了该类化合物经辣根过氧化物酶(HRP)催化氧化的速率常数(InkCAT)与分子结构的定量相关模型.以MEDV-13为分子描述符建立的模型显示:影响去除效果的主要结构因素是由5个MEDV描述子表达的5个子结构碎片,即-CH3、-CH2、-O-、-OH和-cCc,以ETSI为分子描述符所建模型表明:影响该反应速率的主要结构因素是由5个ETSI描述子对应的5个子结构碎片,即-CH3、-CH2、-O-、-OH和>C<.所建模型的估计相关系数分别为0.92和0.93,LOO检验相关系数分别为0.84和0.85,表明2种模型均具有良好的估计能力与稳健性,以上结果说明.虽然酚类雌激素的种类、结构多样,但决定其HRP酶催化去除效果的关键结构因素是酚环上所有取代基整体给电子能力的强弱. 相似文献
32.
O. N. Luk’yanova 《Russian Journal of Ecology》2006,37(3):205-209
The functional state of the indicator species, the Gray mussel Crenomytilus grayanus (Bivalvia), has been analyzed in five areas of Peter the Great Bay exposed to anthropogenic pollution. The following indices of the state of mussels have been used: molecular biomarkers of energy metabolism—Na+,K+-ATPase, Mg2+-ATPase, and total ATPase activity—as well as the level of lipid peroxidation (LPO) and glutathione concentration in the hepatopancreas, gills, and gonads of mussels. The activity of ATPases, LPO level, and glutathione concentration significantly change in mussels from polluted areas relative to those in mussels from a conventionally unpolluted area (a bay in the Far Eastern State Marine Reserve). The molecular biomarkers used in the study provide reliable information on animal metabolism in impact areas. With consideration of the data obtained, it is concluded that the state of mussels in polluted areas is impaired. 相似文献
33.
34.
Jianming Yu Meng Wu Yuwei Tang Jiaqi Shi Jun Hu Zhiliang Yu Jianmeng Chen 《环境科学学报(英文版)》2019,31(12):187-194
Enzymatic electrolysis cell(EEC) has advantages over microbial electrolysis cell(MEC) due to the needless of microbe inoculation and high-efficiency of enzymatic reaction. In this study, an EEC was first applied to achieve the effective degradation of halogenated organic pollutants and dichloromethane(CH_2Cl_2) was utilized as a model pollutant. The results indicate that the degradation efficiency of CH_2Cl_2 after 2 hr reaction in the EEC was almost100%, which was significantly higher than that with enzyme(51.1%) or current(19.0%). The current induced the continuous regeneration of reduced glutathione(GSH), thus CH_2Cl_2 was degraded under the catalysis of GSH-dependent dehalogenase through stepwise dechlorination, and successively formed monochloromethane(CH_3Cl) and methane(CH_4). The kinetic result shows that with a current of 15 mA, the maximum specific degradation rate of CH_2Cl_2(3.77 × 10~(-3) hr~(-1)) was increased by 5.7 times. The optimum condition for CH_2Cl_2 dechlorination was also obtained with pH, current and temperature of 7.0, 15 mA and 35°C,respectively. Importantly, this study helps to understand the behavior of enzymes and the fate of halogenated organic pollutants with EEC, providing a possible treatment technology for halogenated organic pollutants. 相似文献
35.
Enzymatic decolourization of the azo dye, Direct Yellow (DY106) by Cucurbita pepo (courgette) peroxidase (CP) is a complex process, which is greatly affected by pH, temperature, enzyme activity and the concentrations of H2O2 and dye. Courgette peroxidase was extracted and its performance was evaluated by using the free-CP (FCP) and immobilized-CP (ICP) forms in the decolourization of DY106. Immobilization of peroxidase in calcium alginate beads was performed according to a strategy aiming to minimize enzyme leakage and keep its activity at a maximum value by optimizing sodium alginate content, enzyme loading and calcium chloride concentration. The initial conditions at which the highest DY106 decolourization yield was obtained were found at pH 2, temperature 20℃, H2O2 dose 1 mmol/L (FCP) and 100 mmol/L (ICP). The highest decolourization rates were obtained for dye concentrations 50 mg/L (FCP) and 80 mg/L (ICP). Under optimal conditions, the FCP was able to decolorize more than 87% of the dye within 2 min. While with ICP, the decolourization yield was 75% within 15 min. The decolourization and removal of DY106 was proved by UV-Vis analysis. Fourier transform infrared (FT-IR) spectroscopy analysis was also performed on DY106 and enzymatic treatment precipitated byproduct. 相似文献
36.
37.
《Journal of environmental science and health. Part. B》2013,48(5):687-697
The effects of mercuric chloride (Hg) on lipid peroxidation (LPO), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione (GSH) levels in different organs of mice (CD-1) were evaluated. Mice were exposed (2 days/week) to 0.0 (control), 0.8 (low) and 8.0 (mid) and 80.0 (high) gHg/kg/day for 2 weeks. The high dose group was excluded from the study due to high mortality. LPO levels in kidney, testis and epididymus at low and mid doses; GR and GPx levels in testis at mid dose; SOD levels in brain and testis at both doses, liver and epididymus at mid dose; GSH levels in testis at both doses were significantly increased compared to their controls. However, the GR levels in kidney at both doses and in epididymus at mid dose; GPx levels in kidney and epididymus and SOD levels in kidney at both the doses; GSH levels in epididymus at mid dose were significantly decreased compared to their control. Body weight gain and food efficiency were significantly reduced (<0.05) in mid dose. These results indicated that Hg treatment enhanced LPO in all tissues, but showed significant enhancement only in kidney, testis and epididymus suggesting that these organs were more susceptible to Hg toxicity. The increase in antioxidant enzyme levels in testis could be a mechanism protecting the cells against reactive oxygen species. 相似文献
38.
Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5 mM, 1.0 mM and 1.5 mM suspensions of copper II oxide, <50 nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14 d of experiment. Modulation of ascorbate–glutathione cycle, membrane damage, in vivo ROS detection, foliar H2O2 and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5 mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H2O2 produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H2O2 instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages. 相似文献
39.
Luciano Scarponi Daniele Del Buono 《Journal of environmental science and health. Part. B》2013,48(8):805-809
The expression of glutathione S-transferase (GST) activity in Festuca arundinacea was investigated in response to the following herbicide safeners: benoxacor, cloquintocet-mexyl, fenchlorazol-ethyl, fenclorim, fluxofenim and oxabetrinil. All the above compounds enhanced the GST activity tested towards the “model” substrate 1-chloro-2,4-dinitrobenzene (CDNB). Assays of GST activity towards the herbicides terbuthylazine (N 2-tert-butyl-6-chloro-N 4-ethyl-1,3,5-triazine-2,4-diamine) and butachlor (N-butoxymethyl-2-chloro-2′,6′-diethylacetanilide) as substrates also showed the ability of the safeners to enhance the enzyme activity towards both these herbicides, with the exception of cloquintocet-mexyl for the enzyme activity towards butachlor. As a consequence of the above effects at a macro-scale level, decreased herbicide accumulation and persistence were ascertained in response to the addition of the safener benoxacor to both terbuthylazine and butachlor treatments. These results are discussed in terms of capacity of benoxacor to induce herbicide detoxification in Festuca arundinacea with a view to utilizing them in reducing herbicide pollution. 相似文献
40.
M. Almar L. Otero C. Santos J. Gonzalez Gallego 《Journal of environmental science and health. Part. B》2013,48(6):769-783
Abstract Glutathione content and glutahione‐dependent enzymes were measured in the liver of two fish species, gudgeon (Gobio gobio) and roach (Rutilus arcasii), from the river Bernesga (Spain) caught downstream and upstream of the waste site of several chemical industries. Animals from contaminated sites display a reduced glutathione concentration and a tendency to the decrease of glutathione S‐transferase activity. Glutathione peroxidase activity was significantly elevated only in the liver of Gobio gobio and glutathione reductase activity in that of Rutilus arcasii. Our data indicate that the glutathione system constitutes a sensitive biochemical indicator of chemical pollution. Relative changes of glutathione and glutathione‐dependent enzymes in both fish species suggest a different susceptibility to toxins. 相似文献