排序方式: 共有194条查询结果,搜索用时 15 毫秒
51.
以氧化石墨烯和正硅酸乙酯为原料,采用溶胶-凝胶法制得石墨烯/二氧化硅复合材料(GS),以GS为基体,采用液相还原法,得到石墨烯/二氧化硅负载纳米零价铁(NZVI/GS),将其用于水中As(Ⅲ)的吸附研究。通过XRD、TEM、BET、Zeta电位等表征手段对NZVI/GS进行表征。探讨不同反应条件对NZVI/GS的吸附影响,并进行动力学方程和吸附等温线方程拟合。结果表明,NZVI/GS对As(Ⅲ)具有良好的去除效果,当初始溶液pH为6~8,投加量为0.4 g·L-1,反应温度为35 ℃,砷初始浓度为2 mg·L-1时,NZVI/GS对As(Ⅲ)的去除率高达99.81%。通过Langmuir等温吸附方程得到NZVI/GS对As(Ⅲ)最大吸附量55.93 mg·g-1。 相似文献
52.
《环境科学学报(英文版)》2023,35(4):408-422
A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO2 and propylene oxide (PO). The simultaneous presence of halide ions in conjunction with acidic- and basic-functional groups on the surface of the nanoparticles makes them highly active for the production of propylene carbonate (PC). The effects of variables such as catalyst loading, reaction temperature, and structure of substituents are discussed. The proposed catalysts were characterized by different techniques, including Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy/energy dispersive X-ray microanalysis (FESEM/EDX), thermogravimetric analysis (TGA), elemental analysis, atomic force microscopy (AFM), and ultraviolet–visible (UV-Vis) spectroscopy. Under optimal reaction conditions, 3-bromopropionic acid (BPA) immobilized on N-GQD showed a remarkable activity, affording the highest yield of 98% at 140°C and 106 Pa without any co-catalyst or solvent. These new metal-free catalysts have the advantage of easy separation and reuse several times. Based on the experimental data, a plausible reaction mechanism is suggested, where the hydrogen bonding donors and halogen ion can activate the epoxide, and amine functional groups play a vital role in CO2 adsorption. 相似文献
53.
以氧化石墨烯(GO)与石墨相氮化碳(g-C_3N_4)为改性剂,采用界面聚合与超滤抽吸结合,对PVDF平板超滤膜(简称原膜)进行表面改性,得到可见光响应的纳米复合改性膜(简称:GO/g-C_3N_4改性膜),研究改性膜的制备条件及其表面性能.结果表明:(1)最佳制备条件为:g-C_3N_410 mg、g-C_3N_4/GO比值为80、苯胺(An)浓度0.5%、An浸泡时间4 h、过硫酸铵(APS)浓度0.8 g·L~(-1)、APS浸泡时间3 h;(2)GO/g-C_3N_4改性膜表面亲水性与抗污染性能显著提高,表面接触角下降55.1%,通量衰减率下降46.3%,经水力冲洗后膜通量恢复率增加51.5%;(3)改性膜的机械强度与拉伸强度增强,拉伸弹性模量增加;(4)GO/g-C_3N_4改性膜表面具有较强的可见光活性,最大吸收边带为495 nm,表面改性功能层的禁带宽度(Eg)值为2.5 e V.改性膜对罗丹明B(Rh B)的可见光催化降解去除率达到81.2%,而原膜对Rh B吸附去除率仅为42.2%. 相似文献
54.
Yanjun Zhang Changwei Zhao Shaofeng Zhang Ling Yu Jiding Li Li-an Hou 《环境科学学报(英文版)》2019,31(4):183-192
The lack of fresh water in the world makes the search for an effective method to decontaminate water an urgent priority. An important step is to remove different multivalent ions in salt treatment. Nanofiltration (NF) has been used for treating water containing different kinds of salts. In this work, sulfonate group-modified graphene oxide (SGO) was prepared, and added during the interfacial polymerization (IP) reaction to prepare SGO-modifiedNF membranes (PA-SGO). The chemical composition, structure and surface properties of PA and PA-SGO membranes were characterized by FT-IR, XPS, SEM, AFM, contact angle and zeta potential measurements. Their water flux, salt rejection and anti-fouling abilities were investigated systematically. The testing results showed that the water flux of PA-SGO (0.03% SGO) was 45.85 LMH under a pressure of 0.2?MPa, and the salt rejection varied in the order of Na2SO4 (98.99%)?>?MgSO4 (91.25%)?>?MgCl2 (42.27%)?>?NaCl (21.96%). An anti-fouling experiment indicated that the PA-SGO membrane had good anti-fouling properties because of its decreased roughness and increased hydrophilicity and electronegativity. The PA-SGO membrane has good potential for use in removing salt ions from water. 相似文献
55.
在希瓦氏菌(Shewanella putrefaciens)呼吸驱动下,成功制备了生源性还原态的氧化石墨烯(r-GO)修饰的碳毡电极,进一步研究了r-GO修饰碳毡电极与微生物相互作用的电化学特征.结果表明:经r-GO修饰的碳毡电极与微生物的相互作用程度得到显著提升,这主要是由于修饰后电极的扩散内阻(R_(dif))得到快速降低的结果.将r-GO修饰后的碳毡电极作为阳极应用于微生物燃料电池(MFC)中,经微生物呼吸驱动下的石墨烯修饰电极,由于R_(dif)降低导致电极的电化学活性增强,使得电极和微生物相互作用程度得到提升,从而缩短了MFC启动时间,提高了MFC的产电能力.研究进一步表明,r-GO对电极的修饰,调控了对电极电化学活性及生源性电子向电极表面的传递过程. 相似文献
56.
57.
石墨烯氧化物(GO)通常是羟基化石墨烯(Hy G)和羧基化石墨烯(Cy G)负载金属或金属氧化物,作为催化剂可以有效地催化烟气脱硝,对环境保护具有重要意义.本文采用密度泛函理论(DFT)计算来评估Hy G与NO之间的相互作用,以揭示Hy G的氧化活性.首先基于5×5×1、6×6×1、7×7×1、8×8×1和9×9×1周期性石墨烯超晶胞中的碳空位能和OH—结合能来优选Hy G模型,并对优化后的Hy G的电子特性(包括前沿轨道、状态密度)进行研究.进而通过NO和Hy G之间的相互作用,揭示Hy G氧化NO的反应机理,并利用过渡态理论估算关键步骤的速率常数,进行动力学建模以确定羟基化石墨烯氧化NO脱硝反应特性.研究结果表明,无缺陷的羟基化石墨烯氧化NO的活性高于有缺陷的羟基化石墨烯,这为GO基催化材料的设计提供了理论指导. 相似文献
58.
以氧化石墨为前驱体,分别将磁铁矿、赤铁矿和零价铁负载到石墨烯上,通过FTIR和XRD对其进行表征,成功地制备出石墨烯负载磁铁矿(M-RGO)、石墨烯负载赤铁矿(H-RGO)和石墨烯负载零价铁(N-RGO)这3种复合材料.研究比较了3种复合材料的除砷性能,如吸附动力曲线、吸附等温线、pH值范围和共存离子对除砷效果影响.结果表明,3种材料吸附As(Ⅲ)的动力曲线遵从准二级动力学模型,吸附等温线符合Langmuir模型,在相同条件下,其吸附容量依次为N-RGO>MRGO>H-RGO.3种材料均在弱酸性至中性条件下对As(Ⅲ)有较好的吸附效果,M-RGO和H-RGO材料受pH值影响较小,且吸附As(Ⅲ)的最佳pH值范围较N-RGO材料宽.3种材料中,N-RGO材料抗共存离子干扰能力较强,其次是H-RGO材料,MRGO材料最差. 相似文献
59.
石墨烯掺杂聚苯胺阳极提高微生物燃料电池性能 总被引:3,自引:0,他引:3
微生物燃料电池(microbial fuel cell,MFC)技术可分解代谢污染物质并同步输出电能,在环境及能源领域吸引了越来越多的关注.但是,输出功率密度较低、成本较高、底物降解率低等特点限制了其实际应用,其中阳极是主要限制因素之一.本研究选取具有优异导电性、大比表面积的石墨烯和生物相容性较好的聚苯胺(polyaniline,PANI),并优化二者比例关系,制备得到石墨烯掺杂PANI复合材料.将复合材料涂覆在玻碳电极表面分析电化学性能,循环伏安(cyclic voltammetry,CV)和线性伏安扫描(linear sweep voltammetry,LSV)测试结果均显示石墨烯含量占比20%的复合电极(20%石墨烯)电化学性能最好.将复合材料修饰在碳布表面作为MFC阳极时以石墨烯含量占比5%的复合电极(5%石墨烯)生物电化学性能最佳,LSV得到最大输出功率密度为(831±45)mW·m-2,分别是20%石墨烯、1%石墨烯、石墨烯、PANI、碳布阳极的1.2、1.3、1.3、1.5、1.8倍.最大输出电压、开路电压、化学需氧量去除率、库仑效率、生物量密度均以5%石墨烯电极最高.电化学阻抗分析表明5%石墨烯电极极化内阻仅为(24±2)Ω,是碳布电极的19.8%.电化学和生物电化学性能并不完全一致,说明电极材料的生物相容性是影响MFC性能的主要因素之一.5%石墨烯阳极充分发挥了石墨烯和聚苯胺的优点,提高了MFC的产电性能. 相似文献
60.