首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   548篇
  免费   48篇
  国内免费   23篇
安全科学   3篇
废物处理   4篇
环保管理   145篇
综合类   91篇
基础理论   316篇
污染及防治   4篇
评价与监测   26篇
社会与环境   30篇
  2024年   2篇
  2023年   17篇
  2022年   17篇
  2021年   19篇
  2020年   17篇
  2019年   15篇
  2018年   7篇
  2017年   18篇
  2016年   19篇
  2015年   28篇
  2014年   16篇
  2013年   25篇
  2012年   21篇
  2011年   29篇
  2010年   29篇
  2009年   40篇
  2008年   41篇
  2007年   42篇
  2006年   35篇
  2005年   30篇
  2004年   26篇
  2003年   22篇
  2002年   17篇
  2001年   12篇
  2000年   13篇
  1999年   7篇
  1998年   4篇
  1997年   8篇
  1996年   5篇
  1995年   7篇
  1994年   8篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1982年   1篇
  1979年   1篇
排序方式: 共有619条查询结果,搜索用时 31 毫秒
331.
城市中不同生境下鸟类群落特征研究   总被引:2,自引:0,他引:2  
2004年1月至2004年12月,对内蒙古自治区呼和浩特市市区7种不同生态环境类型中的鸟类进行了调查研究。研究结果显示:商业区和交通占地中的鸟类群落最为相似,苗圃和公园中的鸟类群落较为相似。景观水平和干扰因素(样带至市中心的距离、噪音、建筑指标)对鸟类的分布、密度、多样性和丰富度具有不同程度的影响。分析表明,人为干扰影响鸟类多样性、群落结构和生态分布。  相似文献   
332.
道路交通噪声是目前城市中影响范围最广、强度最大的环境噪声,降低其噪声影响,改善城市声环境质量应列为各地政府改善民生的重要工作.根据当前国际形势提出属于人居环境中重要分支的“人居声环境保护”概念,并就该体系建设的几项重要工作进行探讨,为今后城市道路交通噪声影响的评价工作提供借鉴.  相似文献   
333.
Characterizing Small Subbasins: A Case Study from Coastal Oregon   总被引:1,自引:0,他引:1  
A fine-grained statisticaly robust probability sample of stream segments is used to compare two small (20,000 hectare) subbasins of the Tillamook watershed, north coastal Oregon. The two subbasins are matched with respect to several variables [size coastal climates], but vary in terms of geology and consequently land use. A total of 67 wadeable + non-wadeable sizes were identified for sampling in the two subbasins (combined) over two field seasons from a sampling universe consisting of the River Reach File 3 (blue lines on 1:100,000 maps). Target variables include an extensive array of physical habitat endpoints, selected water chemistry endpoints, species composition, and relative abundance of both benthic macroinvertebrates and fish. Field protocols generally followed those of the U.S. EPA's Environmental Monitoring and Assessment Program (EMAP).Eleven fish species were encountered, a typically low number for coastal Oregon streams. Exploratory analysis using nonmetric multidimensional scaling revealed that 92.4% of the variation in the fish assemblages could be explained with two ordination axes. Environmental factors related to stream size and substate were the most correlated to these axes. Further, stream segments for the two subbasins tended to map in different areas of species space. Therefore, we also give unweighted probability distributions for several of the factors that heavily on these two axes by subbasins, as well as probability distributions for chemical endpoints. Results from the subset of sites sampled during the first year (21 wadeable sites) reveal: 1) differences between samples from the two subbasins relates to dream size and substrate composition that are consistent with known differences in geology and land use, 2) unexpectedly minor differences between samples from the two subbasins for stream temperature, canopy cover, and dissolved oxygen, 3) differences between samples from the two subbasins for total P, and total N, possibly related to land use, and 4) unexpected differences in samples from the two subbasins for conductivity, probably related to geological factors. Sample size for each subbasin is low and therefore our samples cannot be taken to necessarily characterize either subbasin. However, our findings are consistent with a comprehensive assessment that had been previously produced for one of the two subbasins.All field work was completed in 8 weeks 3-person field crew. We conclude that rapid assessment protocols, based on probability samples at this level of resolution, can be a cost-effective approach to watershed analysis. This approach should be seen as a complement to, rather than a replacement for, systematic surveys that produced finer scale, reach specific information on factors such as channel complexity and cover relevant to in-stream restoration planning.  相似文献   
334.
A Regional Assessment of Windbreak Habitat Suitability   总被引:4,自引:0,他引:4  
The Environmental Monitoring and Assessment Programwas initiated in 1989 by the United StatesEnvironmental Protection Agency to collect, analyze,and report quantitative, statistically unbiasedinformation about the state of the nation'senvironment on a regional basis. During a pilotprogram in Nebraska we measured a habitat suitabilityindex for a probability sample of 40 windbreaks andexpanded the results to estimate the potential valueof windbreaks as wildlife habitat in Nebraska. Theindex estimates the suitability of a windbreak ashabitat for wildlife including breeding birds, smallmammals, and deer. Index values range from zero toone, where a value of one indicates maximal habitatvalue. We estimated that 50% (±13% at 90%confidence) of windbreaks in Nebraska have a habitatsuitability index of 0.25 or less and that nowindbreaks have a suitability index greater than 0.6. Our results indicate that increasing the area ofindividual windbreaks is the most effective way toimprove their value as wildlife habitat. Monitoringwindbreak condition over time would alert wildlifemanagers to changes in the resource that might affectwildlife populations. Because our data were highlyvariable, the power to detect change in habitatcondition between two measurement periods was low. Amuch larger sample would be required to detect smallchanges in habitat condition. Variability may bereduced, and power increased, by carefully andconsistently constructing the sampling frame, keepingdata collection as simple as possible, appropriatelystratifying sample selection, and using a small numberof well-trained data collection teams. However, wesuggest adapting the index for use with aerialphotography in future efforts to evaluate windbreaksas wildlife habitat in extensive areas.  相似文献   
335.
Many recent developments in coastal science have gone against the demands of European Union legislation. Coastal dune systems which cover small areas of the earth can host a high level of biodiversity. However, human pressure on coastal zones around the world has increased dramatically in the last 50 years. In addition to direct habitat loss, the rapid extinction of many species that are unique to these systems can be attributed to landscape deterioration through the lack of appropriate management. In this paper, we propose to use of an ecosystem classification technique that integrates potential natural vegetation distribution as a reference framework for coastal dune EU Habitats (92/43) distribution analysis and assessment. As an example, the present study analyses the EU Habitats distribution within a hierarchical ecosystem classification of the coastal dune systems of central Italy. In total, 24 land elements belonging to 8 land units, 5 land facets, 2 land systems and 2 land regions were identified for the coastal dunes of central Italy, based on diagnostic land attributes. In central Italy, coastal dune environments including all the beach area, mobile dunes and all the fixed-dune land elements contain or could potentially hold at least one EU habitat of interest. Almost all dune slack transitions present the potentiality for the spontaneous development of EU woodlands of interest. The precise information concerning these ecosystems distribution and ecological relationships that this method produces, makes it very effective in Natura 2000 European network assessment. This hierarchical ecosystem classification method facilitates the identification of areas to be surveyed and eventually bound, under the implementation of EU Habitat directive (92/43) including areas with highly disturbed coastal dune ecosystems.  相似文献   
336.
Fish Responses to Experimental Fragmentation of Seagrass Habitat   总被引:2,自引:0,他引:2  
Abstract: Understanding the consequences of habitat fragmentation has come mostly from comparisons of patchy and continuous habitats. Because fragmentation is a process, it is most accurately studied by actively fragmenting large patches into multiple smaller patches. We fragmented artificial seagrass habitats and evaluated the impacts of fragmentation on fish abundance and species richness over time (1 day, 1 week, 1 month). Fish assemblages were compared among 4 treatments: control (single, continuous 9‐m2 patches); fragmented (single, continuous 9‐m2 patches fragmented to 4 discrete 1‐m2 patches); prefragmented/patchy (4 discrete 1‐m2 patches with the same arrangement as fragmented); and disturbance control (fragmented then immediately restored to continuous 9‐m2 patches). Patchy seagrass had lower species richness than actively fragmented seagrass (up to 39% fewer species after 1 week), but species richness in fragmented treatments was similar to controls. Total fish abundance did not vary among treatments and therefore was unaffected by fragmentation, patchiness, or disturbance caused during fragmentation. Patterns in species richness and abundance were consistent 1 day, 1 week, and 1 month after fragmentation. The expected decrease in fish abundance from reduced total seagrass area in fragmented and patchy seagrass appeared to be offset by greater fish density per unit area of seagrass. If fish prefer to live at edges, then the effects of seagrass habitat loss on fish abundance may have been offset by the increase (25%) in seagrass perimeter in fragmented and patchy treatments. Possibly there is some threshold of seagrass patch connectivity below which fish abundances cannot be maintained. The immediate responses of fish to experimental habitat fragmentation provided insights beyond those possible from comparisons of continuous and historically patchy habitat.  相似文献   
337.
Abstract:  Much research has focused on identifying traits that can act as useful indicators of how habitat loss affects the extinction risk of species, and the results are mixed. We developed 2 simple, rapid-assessment models of the susceptibility of species to habitat loss. We based both on an index of range size, but one also incorporated an index of body mass and the other an index combining habitat and dietary specialization. We applied the models to samples of birds (Accipitridae and Bucerotidae) and to the lemurs of Madagascar and compared the models' classifications of risk with the IUCN's global threat status of each species. The model derived from ecological attributes was much more robust than the one derived from body mass. Ecological attributes identified threatened birds and lemurs with an average of 80% accuracy and endangered and critically endangered species with 100% accuracy and identified some species not currently listed as threatened that almost certainly warrant conservation consideration. Appropriate analysis of even fairly crude biological information can help raise early-warning flags to the relative susceptibilities of species to habitat loss and thus provide a useful and rapid technique for highlighting potential species-level conservation issues. Advantages of this approach to classifying risk include flexibility in the specialization parameters used as well as its applicability at a range of spatial scales.  相似文献   
338.
Abstract:  We used a species-distribution modeling approach, ground-based climate data sets, and newly available remote-sensing data on vegetation from the MODIS and Quick Scatterometer sensors to investigate the combined effects of human-caused habitat alterations and climate on potential invasions of rainforest by 3 savanna snake species in Cameroon, Central Africa: the night adder (Causus maculatus) , olympic lined snake (Dromophis lineatus) , and African house snake (Lamprophis fuliginosus) . Models with contemporary climate variables and localities from native savanna habitats showed that the current climate in undisturbed rainforest was unsuitable for any of the snake species due to high precipitation. Limited availability of thermally suitable nest sites and mismatches between important life-history events and prey availability are a likely explanation for the predicted exclusion from undisturbed rainforest. Models with only MODIS-derived vegetation variables and savanna localities predicted invasion in disturbed areas within the rainforest zone, which suggests that human removal of forest cover creates suitable microhabitats that facilitate invasions into rainforest. Models with a combination of contemporary climate, MODIS- and Quick Scatterometer-derived vegetation variables, and forest and savanna localities predicted extensive invasion into rainforest caused by rainforest loss. In contrast, a projection of the present-day species-climate envelope on future climate suggested a reduction in invasion potential within the rainforest zone as a consequence of predicted increases in precipitation. These results emphasize that the combined responses of deforestation and climate change will likely be complex in tropical rainforest systems.  相似文献   
339.
Abstract: Fragmentation of natural habitats can increase numbers of rare species. Conservation of rare species requires experts and resources, which may be lacking for many species. In the absence of regular surveys and expert knowledge, historical sighting records can provide data on the distribution of a species. Numerous models have been developed recently to make inferences regarding the threat status of a taxon on the basis of variation in trends of sightings over time. We applied 5 such models to national and regional (county) data on 3 red‐listed orchid species (Cephalanthera longifolia, Hammarbya paludosa, and Pseudorchis albida) and 1 species that has recently come to the attention of conservation authorities (Neotinea maculata) in the Republic of Ireland. In addition, we used an optimal linear estimate to calculate the time of extinction for each species overall and within each county. To account for bias in recording effort over time, we used rarefaction analysis. On the basis of sighting records, we inferred that these species are not threatened with extinction and, although there have been declines, there is no clear geographical pattern of decline in any species. Most counties where these orchid species occurred had a low number of sightings; hence, we were cautious in our interpretation of output from statistical models. We suggest the main drivers of decline in these species in Ireland are modification of habitats for increased agricultural production and lack of appropriate management. Our results show that the application of probabilistic models can be used even when sighting data are scarce, provided multiple models are used simultaneously and rarefaction is used to account for bias in recording effort among species over time. These models could be used frequently when making an initial conservation assessment of species in a region, particularly if there is a relatively constant recording rate and some knowledge of the underlying recording process. Regional‐scale analyses, such as ours, complement World Conservation Union criteria for assessment of the extinct category and are useful for highlighting areas of under recording and focusing conservation efforts of rare and endangered species.  相似文献   
340.
Abstract:  Global goals established by the Convention on Biological Diversity stipulate that 10% of the world's ecological regions must be effectively conserved by 2010. To meet that goal for the mediterranean biome, at least 5% more land must be formally protected over the next few years. Although global assessments identify the mediterranean biome as a priority, without biologically meaningful analysis units, finer-resolution data, and corresponding prioritization analysis, future conservation investments could lead to more area being protected without increasing the representation of unique mediterranean ecosystems. We used standardized analysis units and six potential natural vegetation types stratified by 3 elevation zones in a global gap analysis that systematically explored conservation priorities across the mediterranean biome. The highest levels of protection were in Australia, South Africa, and California-Baja California (from 9–11%), and the lowest levels of protection were in Chile and the mediterranean Basin (<1%). Protection was skewed to montane elevations in three out of five regions. Across the biome only one of the six vegetation types—mediterranean shrubland—exceeded 10% protection. The remaining vegetation types—grassland, scrub, succulent dominated, woodland, and forest—each had <3% protection. To guard against biases in future protection efforts and ensure the protection of species characteristic of the mediterranean biome, we identified biodiversity assemblages with <10% protection and subject to >30% conversion and suggest that these assemblages be elevated to high-priority status in future conservation efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号