首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   1篇
废物处理   4篇
综合类   1篇
基础理论   8篇
  2020年   1篇
  2018年   2篇
  2013年   4篇
  2012年   1篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
Box core samples BC26 and BC36 from geologically different settings were examined to test the hypothesis that autochthonous microbial communities from polymetallic-nodule-rich Central Indian Basin sediments actively participate in immobilising metal ions. The bottom water dissolved oxygen concentration was reported to be 4.2–4.3 mL·L?1 in the northern siliceous ooze (BC26) and 4.1–4.2 mL·L?1 in the southern pelagic red clay (BC36); the sedimentation rates for these regions were 0.834 and 0.041 cm·kyr?1, respectively. An onboard experiment, conducted under oxic and sub-oxic conditions with 100 μmol of Mn, Co and Ni, showed that microbial immobilisation under sub-oxic conditions was higher than in azide-treated controls in BC26 for Mn, Co and Ni at 30, 2 and 4 cm below sea floor (bsf), respectively, after 45 days. The trend in immobilisation was BC 26>BC 36, Co>Mn>Ni under oxic conditions and Mn>Co>Ni under sub-oxic conditions. The depth of maximum immobilisation for Co in BC26 under sub-oxic conditions coincided with the yield of cultured Co-tolerant bacteria and Ni only with organic carbon at 4 cm bsf. This study demonstrates that the organic carbon content and bioavailable metal concentrations in sediments regulate microbial participation in metal immobilisation.  相似文献   
12.
The immobilisation of heavy metals in the soil of a 25-year-old active firing range using durian (Durio zibethinus L.) tree sawdust (DTS), coconut coir (CC) and oil palm empty fruit bunch (EFB) was investigated. The immobilisation effects were evaluated in terms of metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability. A pot experiment was conducted by amending the firing range soil with DTS, CC and EFB at application rates of 0%, 1% and 3% (w/w), respectively. All amendments increased the biomass yield and reduced the uptake of heavy metals in the plant tissue. Zn had the highest values of Bioconcentration Factor (BCF: 0.301–0.865) and Translocation Factor (TF: 1.056–1.883). Pb was the least-accumulated and transported metal in the plant tissues, with the BCF and TF values of 0.019–0.048 and 0.038–0.116, respectively. The bioavailable fraction of heavy metals in the firing range soil decreased following the application of the three agricultural wastes studied. DTS, CC and EFB did not cause toxicity symptoms in the water spinach over the pot experiment. Therefore, DTS, CC and EFB are considered promising immobilising agents for the remediation of metal-contaminated land.  相似文献   
13.
A pot experiment was conducted to evaluate the effectiveness of sepiolite-induced immobilisation remediation of Cd contaminated soil. The results demonstrated that adding sepiolite significantly increased the soil pH and resulted in 35.1–66.0%, 30.3–48.9%, and 31.6–51.6% reduction in toxicity characteristic leaching procedure of Cd (TCLP-Cd), respectively, for the Cd levels of 1.25, 2.5, and 5?mg/kg compared with the no-sepiolite controls. These decreases in TCLP-Cd were associated with reductions in plant phyotoxicity and Cd absorption, and sepiolite-treated soils resulted in increases of 3.2–38.0%, 34.2–52.3%, and 8.4–51.5% in shoot biomass, respectively, and in decreases of 26.7–39.6%, 17.3–28.5%, and 6.1–21.8% in shoot Cd contents, respectively, under soil Cd concentration of 1.25, 2.5 and 5?mg/kg compared to the unamended soils. The greater microbial biomass and catalase and urease activities after applying sepiolite implied a certain degree of recovery in metabolic function recovery during soil remediation. These results demonstrated that the application of sepiolite not only was effective at reducing Cd bioavailability and the rate of Cd accumulation in plants, but also improved soil environmental quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号