首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   691篇
  免费   95篇
  国内免费   419篇
安全科学   138篇
废物处理   55篇
环保管理   55篇
综合类   650篇
基础理论   118篇
污染及防治   162篇
评价与监测   17篇
社会与环境   4篇
灾害及防治   6篇
  2024年   1篇
  2023年   18篇
  2022年   24篇
  2021年   40篇
  2020年   32篇
  2019年   38篇
  2018年   31篇
  2017年   27篇
  2016年   46篇
  2015年   58篇
  2014年   56篇
  2013年   57篇
  2012年   73篇
  2011年   69篇
  2010年   49篇
  2009年   59篇
  2008年   40篇
  2007年   74篇
  2006年   66篇
  2005年   42篇
  2004年   30篇
  2003年   43篇
  2002年   25篇
  2001年   26篇
  2000年   24篇
  1999年   35篇
  1998年   28篇
  1997年   19篇
  1996年   9篇
  1995年   15篇
  1994年   12篇
  1993年   15篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1205条查询结果,搜索用时 31 毫秒
491.
PM2.5染毒心血管内皮细胞24h后,提取内皮细胞中的mRNA,通过逆转录多聚酶链式反应(RT-PCR)技术及电泳的方法,确定PM2.5染毒前后心血管内皮细胞中IL-4、嗜酸性粒细胞活化趋化因子(extaxin)相对含量的变化.结果表明,随着大气PM2.5染毒浓度的增加,0.05,0.20mg/mL染毒组心血管内皮细胞中IL-4和extaxin mRNA表达产物的相对含量显著增高,说明IL-4、extaxin等I型变态反应相关炎性因子在PM2.5的心血管毒性中可能起一定作用.  相似文献   
492.
管道内烟气喷雾脱硫的研究   总被引:15,自引:0,他引:15  
对不同SO2 初始浓度下 ,竖直管道内利用石灰浆喷雾脱除烟气中二氧化硫的方案做了实验研究 ,以模拟石灰液喷雾对燃煤锅炉尾气中SO2 的吸收效果。结果表明 ,可以在较低的钙硫摩尔比下 ,用这一方法使中等浓度SO2 烟气获得较高的脱硫效率。本研究结合双膜理论和双反应面模型 ,对石灰浆滴吸收SO2 的机理给出了解释 ,说明了实验现象和某些类似实验研究的结果。  相似文献   
493.
利用比较积分反应速率的方法,建立了一个简化液相化学反应机理ARCML,并在各种大气状况下以及各种物理参数下对ARCML作了验证,然后利用ARCML模拟光化学烟雾形成初期的云水酸化过程,结果表明,自由基氧化S(Ⅳ)在污染或高NOx的大气中非常重要。  相似文献   
494.
针对彩管行业含铬废水处理工艺存在的不足,分别从还原剂和混凝剂两方面进行改进.通过比较和分析,最终提出了采用FeSO4作为还原剂处理含铬废水,氧化还原反应pH调节范围扩大,运行安全系数提高;利用新型高效混凝剂配合泥回流工艺,化学药品用量大幅下降,出水COD和SS含量显著减少.  相似文献   
495.
系统地评述了无机、有机阳离子、农药分子、细菌等环境污染物在蒙脱石层间域中的吸附、脱附、氧化还原、催化降解等界面反应机理 ,并指出它们的环境化学行为对环境的影响和意义  相似文献   
496.
Russ AS  Vinken R  Schuphan I  Schmidt B 《Chemosphere》2005,60(11):1624-1635
Eight tertiary nonanols were synthesized via Grignard reaction and coupled by Friedel–Crafts alkylation with phenol to the corresponding nonylphenols. Six branched para-nonylphenols (NP) were obtained: 4-(3′-methyl-3′-octyl)phenol (33NP), 4-(2′-methyl-2′-octyl)phenol (22NP), 4-(2′,5′-dimethyl-2′-heptyl)phenol (252NP), 4-(2′,5′,5′-trimethyl-2′-hexyl)phenol (2552NP), 4-(2′,4′-dimethyl-2′-heptyl)phenol (242NP) and 4-(4′-ethyl-2′-methyl-2′-hexyl)phenol (4E22NP). Their structures were confirmed by GC–MS and NMR spectroscopy. These six isomers as well as the earlier synthesized 4-(3′,5′-dimethyl-3′-heptyl)phenol (353NP), 4-(3′,6′-dimethyl-3′-heptyl)phenol (363NP) and 4-(2′,6′-dimethyl-2′-heptyl)phenol (262NP) were compared with commercial NP mixtures purchased from Acros and Fluka by GC–MS (equipped with a 100 m polysiloxane column). The analyses revealed that all obtained isomers are occurring in different quantities in both commercial NP mixtures.  相似文献   
497.
498.
INTENTION, GOAL, SCOPE, BACKGROUND: Since the intermediate products of some compounds can be more toxic and/or refractory than the original compund itself, the development of innovative oxidation technologies which are capable of transforming such compounds into harmless end products, is gaining more importance every day. Advanced oxidation processes are one of these technologies. However, it is necessary to optimize the reaction conditions for these technologies in order to be cost-effective. OBJECTIVE: The main objectives of this study were to see if complete mineralization of 4-chlorophenol with AOPs was possible using low pressure mercury vapour lamps, to make a comparison of different AOPs, to observe the effect of the existence of other ions on degradation efficiency and to optimize reaction conditions. METHODS: In this study, photochemical advanced oxidation processes (AOPs) utilizing the combinations of UV, UV/H2O2 and UV/H2O2/Fe2+ (photo-Fenton process) were investigated in labscale experiments for the degradation and mineralization of 4-chlorophenol. Evaluations were based on the reduction of 4-chlorophenol and total organic carbon. The major parameters investigated were the initial 4-chlorophenol concentration, pH, hydrogen peroxide and iron doses and the effect of the presence of radical scavengers. RESULTS AND DISCUSSION: It was observed that the 4-chlorophenol degradation efficiency decreased with increasing concentration and was independent of the initial solution pH in the UV process. 4-chlorophenol oxidation efficiency for an initial concentration of 100 mgl(-1) was around 89% after 300 min of irradiation in the UV process and no mineralization was achieved. The efficiency increased to > 99% with the UV/H2O2 process in 60 min of irradiation, although mineralization efficiency was still around 75% after 300 min of reaction time. Although the H2O2/4-CP molar ratio was kept constant, increasing initial 4-chlorophenol concentration decreased the treatment efficiency. It was observed that basic pHs were favourable in the UV/H2O2 process. The results showed that the photo-Fenton process was the most effective treatment process under acidic conditions. Complete disappearance of 100 mgl(-1) of 4-chlorophenol was achieved in 2.5 min and almost complete mineralization (96%) was also possible after only 45 min of irradiation. The efficiency was negatively affected from H2O2 in the UV/H2O2 process and Fe2+ in the photo-Fenton process over a certain concentration. The highest negative effect was observed with solutions containing PO4 triple ions. Required reaction times for complete disappearance of 100 mgl(-1) 4-chlorophenol increased from 2.5 min for an ion-free solution to 30 min for solutions containing 100 mgl(-1) PO4 triple ion and from 45 min to more than 240 min for complete mineralization. The photodegradation of 4-chlorophenol was found to follow the first-order law. CONCLUSION: The results of this study showed that UV irradiation alone can degrade 4-CP, although at very slow rates, but cannot mineralize the compound. The addition of hydrogen peroxide to the system, the so-called UV/H2O2 process, significantly enhances the 4-CP degradation rate, but still requires relatively long reaction periods for complete mineralization. The photo-Fenton process, the combination of homogeneous systems of UV/H2O2/Fe2+ compounds, produces the highest photochemical elimination rate of 4-CP and complete mineralization is possible to achieve in quite shorter reaction periods when compared with the UV/H2O2 process. RECOMMENDATIONS AND OUTLOOK: It is more cost effective to use these processes for only purposes such as toxicity reduction, enhancement of biodegradability, decolorization and micropollutant removal. However the most important point is the optimization of the reaction conditions for the process of concern. In such a case, AOPs can be used in combination with a biological treatment systems as a pre- or post treatment unit providing the cheapest treatment option. The AOP applied, for instance, can be used for toxicity reduction and the biological unit for chemical oxygen demand (COD) removal.  相似文献   
499.
利用激光光散射技术,研究了不同条件下Ferton反应中Fe(Ⅲ)水解过程的粒径变化,并和一般铁盐体系中Fe(Ⅲ)水解过程进行了比较,结果表明,Fe(Ⅲ)的水解过程中,粒径变化受水解度B^*和铁盐浓度的影响,即B^*值愈大,浓度愈高,体系粒径愈大.并且在相同浓度和水解度B^*的条件下,Fenton反应生成的Fe(Ⅲ)比一般铁盐的水解聚合迅速,形成的粒径大,对采油废水进行处理的实验结果表明,Fenton体系对有机物的吸附去除效果明显优于常规铁盐体系,这可能与Fenton体系的高水解速率有关。  相似文献   
500.
The performances and kinetic parameters of Fenton oxidation of 2,4- and 2,6-dinitrotoluene (DNT) in water-acetone mixtures and explosive contaminated soil washing-out solutions were investigated at a laboratory scale. The experimental results show that acetone can be a significant hydroxyl radical scavenger and result in serious inhibition of Fenton oxidation of 2,4- and 2,6-DNT. Although no serious inhibition was found in contaminated soil washing-out solutions, longer reaction time was needed to remove 2,4- and 2,6-DNT completely, mainly due to the competition of hydroxyl radicals. Fenton oxidation of 2,4- and 2,6-DNT fit well with the first-order kinetics and the presence of acetone also reduced DNT’s degradation kinetics. Based on the comparison and matching of retention time and ultraviolet (UV) spectra between high performance liquid chromatography (HPLC) and standards, the following reaction pathway for 2,4-DNT primary degradation was proposed: 2,4-DNT → 2,4-dinitro-benzaldehyde → 2,4-dinitrobenzoic acid → 1,3-dinitrobenzene → 3-nitrophenol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号