首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   13篇
  国内免费   107篇
安全科学   2篇
废物处理   1篇
环保管理   12篇
综合类   143篇
基础理论   17篇
污染及防治   51篇
评价与监测   9篇
社会与环境   2篇
灾害及防治   1篇
  2024年   2篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   5篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   9篇
  2015年   10篇
  2014年   9篇
  2013年   7篇
  2012年   6篇
  2011年   20篇
  2010年   15篇
  2009年   17篇
  2008年   12篇
  2007年   19篇
  2006年   19篇
  2005年   6篇
  2004年   8篇
  2003年   12篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1986年   2篇
  1971年   1篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
221.
复合生物反应器低溶解氧同步脱氮除磷   总被引:2,自引:0,他引:2  
利用复合生物反应器(HBR)中同时存在的活性污泥和悬浮生物膜混合生物体系,进行了同步脱氮除磷的试验研究.结果表明,溶解氧浓度和进水COD/TN对系统脱氮除磷效果有重要影响.当曝气量(Qair)控制在0.07m3/h时,系统的同步脱氮除磷效果较好,最大释磷率(释磷结束时溶液中PO3-4-P浓度与初始PO3-4-P浓度百分比)为249%,TN平均去除率为80.0%,PO3-4-P去除率为92.2%.曝气量升高或降低,TN、PO3-4-P去除率均降低.随着COD/TN的升高,系统TN、PO3-4-P去除率也逐渐升高,COD/TN从3.2升高至10.5,系统TN平均去除率从70.3%升高至84.9%,PO3-4-P平均去除率从82.2%高至96.0%.整个试验过程中污泥体积指数(SVI)均小于90 mL/g,污泥的沉降性能良好.实验采用复合反应器进水后未经过传统脱氮、除磷理论认为所必须的缺氧、厌氧段而直接曝气,仍然取得较高的TN、PO3-4-P去除率.  相似文献   
222.
康媞  杨双全  刘群  符露 《环保科技》2011,17(3):9-12
通过微氧+人工湿地组合工艺对生活污水处理效果的研究,认为该工艺是比较适合农村生活污水处理应用的工艺组合。微氧预处理对COD的平均去除率在30%以上,人工湿地水力负荷为0.2 m3/(m2.d),对COD的平均去除率在60%以上,对NH3-N的平均去除率在30%~40%,该工艺组合的运行费用为0.15~0.20元/t(污水自流进入系统情况下)。  相似文献   
223.
河道曝气提升河流水质的WASP模型研究   总被引:4,自引:2,他引:2  
朱文博  王洪秀  柳翠  张建  梁爽 《环境科学》2015,36(4):1326-1331
曝气充氧是修复受污染河道的重要技术,数学模型是预测、评估环境污染状况的重要方法.本研究应用WASP水质模型评价不同时段河道曝气对河流水质的提升作用.初期模型验证结果表明,WASP水质模型拟合结果与实际监测结果基本吻合,可为水污染治理工程提供参考依据.在此基础上,对不同曝气条件进行模拟分析,结果表明,河道曝气能够有效降低河水中的化学需氧量(COD)和氨氮(NH+4-N)浓度,改善水质;随着曝气河段内溶解氧(DO)水平的提升,水质虽不断改善,但改善幅度逐渐减小;全年不同月份曝气效果差异显著,5~9月曝气效果较好.结合经济投入和环境效益,最终确定夏季提升DO水平达到4 mg·L-1为河道曝气最优条件.  相似文献   
224.
以三峡水库典型支流库湾小江和香溪河为例,通过2020年蓄水期不同阶段的野外监测,对比分析了两条支流库湾的水动力过程、热分层、溶解氧时空差异及其对蓄水过程的响应.结果表明:(1)蓄水初期,小江库湾表层受大气复氧和浮游植物影响溶解氧较高(7.00~13.00 mg·L-1,其氧跃层出现在水深3~5 m处,5 m以下水域出现大面积缺氧(DO<2.00 mg·L-1),甚至无氧现象.香溪河库湾溶解氧在垂向上大致可以分为3层:表层富氧水体(8.00~12.00 mg·L-1)、中层水体(6.00~8.00 mg·L-1)和底层低氧水体(4.00~6.00 mg·L-1).(2)稳定的热分层为底层厌氧的形成提供了稳定的物理环境,而小江上游来流以及消落带植被分解增加了水体有机质的含量,可能是造成小江水体耗氧量增大、形成厌氧的内因;而香溪河因为长期存在的顺坡异重流补给,底层水体缺氧的风险较低.(3)持续的跟踪监测发现水库蓄水对支流库湾溶解氧起到了显著的补给作用,促使小江库湾厌氧现象在短期...  相似文献   
225.
秦宇  郭劲松  方芳  杨国红 《环境科学》2009,30(2):493-498
为研究溶解氧及曝停比对单级自养脱氮系统微生物群落结构的影响,从不同溶解氧水平及曝停比条件下的SBBR单级自养脱氮反应器中采集活性污泥及生物膜样品,进行PCR-DGGE及条带统计分析.结果表明,经过1.5 a稳定运行,该系统内微生物群落结构与接种污泥相比已变得简单且较稳定.曝停比为2 h∶2 h的条件下,中高低3种溶解氧水平中,生物膜微生物群落丰富度值均高于活性污泥.DO在(曝气)2.0 mg/L(停曝) 0.4 mg/L时系统运行效能最佳,微生物群落丰富度值最高,生物膜和活性污泥样品中条带数分别约为14条和10条,微生物的多样性及相互协同代谢过程是维持单级自养脱氮系统具有较高运行效能的一个关键因素.此外,曝停比对单级自养脱氮系统微生物群落结构有较大影响.3 h∶5 h的较长曝停周期下,活性污泥与生物膜微生物组成接近,相似性为100%,各类细菌虽在活性污泥与生物膜中均能生存但活性较低,系统运行效能差.  相似文献   
226.
MBR中影响同步硝化反硝化的生态因子   总被引:39,自引:1,他引:39  
研究了DO、C/N、pH等生态因子对膜生物反应器同步硝化反硝化的影响.结果表明,只有在各生态因子保持得当的条件下,同步硝化反硝化才能顺利地进行.DO为1mg/L左右、C/N比为30左右、进水pH值约7.2左右时COD、NH4+、TN的去除率分别为96%、95%和92%.  相似文献   
227.
研究了二段式接触氧化工艺处理城市生活垃圾填埋渗滤液的强化预处理单元溶解氧变化对单元运行效果的影响。监测了0.2mg/L,0.4mg/L,0.6mg/L,0.8mg/L,1.0mg/L五个DO水平下,COD、NH3-N在0~30h内降解状况,降解曲线在较低的DO条件下,高效段较短,而DO越高,高效段越长。同时,对不同DO水平下C/N随时间的变化也进行了检测,为达到不同的C/N水平提供了工况选择上的参考。分析了降解曲线的特征及其工程应用的价值,提出了常规条件下该单元较优的溶解氧工况水平。  相似文献   
228.
藻类生长过程中DO、pH与叶绿素相关性分析   总被引:7,自引:0,他引:7  
为了在"水华"发生过程中,找到一些合理的预报参数,给河湖管理提供科学依据。在实验室做了藻类的培养试验。通过计算可以知道,pH比溶解氧(DO)与叶绿素有更好的相关性,更适合做为藻类生长情况的预报参数;溶解氧之差(△DO)与藻类的生长情况负相关性比pH之差(△pH)与藻类生长的负相关性要好;得到了在总氮0.62mg/L,总磷0.37mg/L、光强为132201x、水温为28.5℃,气压为1.016×10~5Pa的条件下的光合作用产氧速率函数;在水温为26.5~28.6℃的条件下藻类的耗氧速率为0.0176mg/(μg·h)。  相似文献   
229.
杜贺  李冬  周川  梁瑜海  王曼  袁朋飞  姜松  张杰 《环境科学》2010,31(10):2365-2369
以A/O除磷工艺的二级出水为进水,通过低溶解氧控制,实现了亚硝酸盐的稳定积累.为研究系统的稳定性,从3个方面分别研究了总氮损失、水力停留时间(HRT)和回流比(R)对稳定亚硝化的影响.结果表明,系统的表观亚硝化率受COD浓度影响,COD≤50mg/L时,表观亚硝化率降低,COD50mg/L时,表观亚硝化率会增加;延长和缩短HRT都对稳定亚硝化存在正反两方面影响,应根据实际情况进行动态控制;提高回流比会增加破坏稳定亚硝化的风险,以较低回流比0.5为宜.另外,低溶解氧浓度不会降低系统的亚硝化效率,在HRT=6h,R=0.5,t为22~24℃条件下,平均氨氮去除率达83%,氨氮去除负荷为0.28kg/(kg·d),亚硝酸盐积累率接近100%.  相似文献   
230.
大辽河口COD与DO的分布特征及其影响因素   总被引:3,自引:3,他引:3  
杨福霞  简慧敏  田琳  姚庆祯 《环境科学》2014,35(10):3748-3754
分别于2010年4月、7月和11月采集大辽河口表层水样,测定水体中COD与DO的含量并探讨其分布特征及影响因素.结果表明,4月、7月和11月COD含量平均值分别为12.10、4.42和4.38 mg·L-1,COD的季节分布主要受降雨量、径流量及工业和城市污水排放的影响.空间分布上,COD从河口内向其邻近海域逐渐递减,而DO的变化趋势相反;COD的分布主要受河口两岸工农业及城市污水的排放和潮汐的影响.4月、7月和11月DO含量平均值分别为8.46、4.23和10.30mg·L-1,DO的季节分布主要受温度和耗氧有机物的影响.夏季在低盐度区出现了缺氧现象,这主要与营口有机物和营养盐的过度排放、潮汐作用和河口内水体停留时间长等因素有关.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号