首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1820篇
  免费   209篇
  国内免费   499篇
安全科学   43篇
废物处理   12篇
环保管理   206篇
综合类   824篇
基础理论   1066篇
污染及防治   149篇
评价与监测   71篇
社会与环境   132篇
灾害及防治   25篇
  2024年   5篇
  2023年   49篇
  2022年   75篇
  2021年   85篇
  2020年   107篇
  2019年   72篇
  2018年   69篇
  2017年   99篇
  2016年   91篇
  2015年   110篇
  2014年   104篇
  2013年   147篇
  2012年   127篇
  2011年   173篇
  2010年   122篇
  2009年   131篇
  2008年   127篇
  2007年   156篇
  2006年   100篇
  2005年   111篇
  2004年   81篇
  2003年   63篇
  2002年   44篇
  2001年   30篇
  2000年   39篇
  1999年   30篇
  1998年   24篇
  1997年   25篇
  1996年   25篇
  1995年   19篇
  1994年   15篇
  1993年   15篇
  1992年   14篇
  1991年   8篇
  1990年   7篇
  1989年   6篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1984年   4篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2528条查询结果,搜索用时 15 毫秒
991.
Saproxylic (dead-wood-associated) and old-growth species are among the most threatened species in European forest ecosystems, as they are susceptible to intensive forest management. Identifying areas with particular relevant features of biodiversity is of prime concern when developing species conservation and habitat restoration strategies and in optimizing resource investments. We present an approach to identify regional conservation and restoration priorities even if knowledge on species distribution is weak, such as for saproxylic and old-growth species in Switzerland. Habitat suitability maps were modeled for an expert-based selection of 55 focal species, using an ecological niche factor analyses (ENFA). All the maps were then overlaid, in order to identify potential species’ hotspots for different species groups of the 55 focal species (e.g., birds, fungi, red-listed species). We found that hotspots for various species groups did not correspond. Our results indicate that an approach based on “richness hotspots” may fail to conserve specific species groups. We hence recommend defining a biodiversity conservation strategy prior to implementing conservation/restoration efforts in specific regions. The conservation priority setting of the five biogeographical regions in Switzerland, however, did not differ when different hotspot definitions were applied. This observation emphasizes that the chosen method is robust. Since the ENFA needs only presence data, this species prediction method seems to be useful for any situation where the species distribution is poorly known and/or absence data are lacking. In order to identify priorities for either conservation or restoration efforts, we recommend a method based on presence data only, because absence data may reflect factors unrelated to species presence.  相似文献   
992.
Total organic carbon, humic substances, and the species of trace metals (including Cu, Zn, Pb, Cd, Cr, Mn and Fe) in six and seven phases, such as bioexchangeable (P1), skeletal (carbonates, P2), easily reducible (Fe and Mn oxides, P3), moderately reducible (crystalline Mn oxides, P4), organic matters with sulphides (P5), and detritus with minerals (P6) as well as organic with humic substances (PB4) and organic residues (PB6), were analyzed in sediments from the Taiwan Erhjin coastal (including river and estuarine) area, where places we found the copper pollution. Results indicate that higher percentages of P1 and P2 for copper, zinc, lead, cadmium and manganese in samples collected in March and September of 1990 were much higher than those in P3-P6. High percentages of chromium and iron in samples respectively collected in March and September of 1990 were found in P6. for the seven phase analysis, higher percentages of copper species in PB4 and PB6 as well as iron species in PB7 were observed. On the other hand, purified humic acid with the high contents of manganese and iron in humic acid as well as purified fulvic acids were generally found at the upstream stations; and low values at coastal stations. However, extremely high copper (as high as 1750μg g-1, dry weight in fulvic acid and 820μg g-1 in humic acid) and lead (821μg g-1 in humic acid) concentrations with relatively high manganese and iron concentrations were observed in humic substances from the station near the copper recycling area. Comparing the results obtained from the Antarctic Ocean sediments with those from the Taiwan Erhjin Chi coastal sediments, the human impacts on the latter are evaluated.  相似文献   
993.
Non-native species have invaded most parts of the world, and the invasion process is expected to continue and accelerate. Because many invading non-native species are likely to become permanent inhabitants, future consideration of species-area relationships (SARs) should account for non-native species, either separately or jointly with native species. If non-native species occupy unused niches and space in invaded areas and extinction rate of native species remains low (especially for plants), the resultant SARs (with both native and non-native species) will likely be stronger. We used published and newly compiled data (35 data sets worldwide) to examine how species invasions affect SARs across selected taxonomic groups and diverse ecosystems around the world. We first examined the SARs for native, non-native, and all species. We then investigated with linear regression analyses and paired or unpaired t tests how degree of invasion (proportion of non-native species) affected postinvasion SARs. Postinvasion SARs for all species (native plus non-native) became significantly stronger as degree of invasion increased (r2 = 0.31, p = 0.0006), thus, reshaping SARs worldwide. Overall, native species still showed stronger and less variable SARs. Also, slopes for native species were steeper than for non-native species (0.298 vs. 0.153). There were some differences among non-native taxonomic groups in filling new niches (especially for birds) and between islands and mainland ecosystems. We also found evidence that invasions may increase equilibrial diversity. Study of such changing species–area curves may help determine the probability of future invasions and have practical implications for conservation.  相似文献   
994.
Many organisms live in networks of local populations connected by dispersing individuals, called spatially structured populations (SSPs), where the long-term persistence of the entire network is determined by the balance between 2 processes acting at the scale of local populations: extinction and colonization. When multiple threats act on an SSP, a comparison of the different factors determining local extinctions and colonizations is essential to plan sound conservation actions. We assessed the drivers of long-term population dynamics of multiple amphibian species at the regional scale. We used dynamic occupancy models within a Bayesian framework to identify the factors determining persistence and colonization of local populations. Because connectivity among patches is fundamental to SSPs dynamics, we considered 2 measures of connectivity acting on each focal patch: incidence of the focal species and incidence of invasive crayfish. We used meta-analysis to summarize the effect of different drivers at the community level. Persistence and colonization of local populations were jointly determined by factors acting at different scales. Persistence probability was positively related to the area and the permanence of wetlands, whereas it was negatively related to occurrence of fish. Colonization probability was highest in semipermanent wetlands and in sites with a high incidence of the focal species in nearby sites, whereas it showed a negative relationship with the incidence of invasive crayfish in the landscape. By analyzing long-term data on amphibian population dynamics, we found a strong effect of some classic features commonly used in SSP studies, such as patch area and focal species incidence. The presence of an invasive non-native species at the landscape scale emerged as one of the strongest drivers of colonization dynamics, suggesting that studies on SSPs should consider different connectivity measures more frequently, such as the incidence of predators, especially when dealing with biological invasions.  相似文献   
995.
Culturomic tools enable the exploration of trends in human–nature interactions, although they entail inherent biases and necessitate careful validation. Furthermore, people may engage with nature across different culturomic data sets differently. We evaluated people's digital interest and engagement with plant species based on Wikipedia and Google data and explored the conservation implications of these temporal interest patterns. As a case study, we explored the digital footprints of the most popular plant species in Israel. We analyzed 4 years of daily page views from Hebrew Wikipedia and 10 years of daily Google search volume in Israel. We modeled popularity of plant species in these 2 data sets based on a suite of plant attributes. We further explored the seasonal trends of people's interest in each species. We found differences in how people interacted digitally with plants in Wikipedia and Google. Overall, in Google, searches for species that have utility to humans were more common, whereas in Wikipedia, plants that serve as cultural emblems received more attention. Furthermore, in Google, popular species attracted more attention over time, opposite to the trend in Wikipedia. In Google, interest in species with short bloom duration exhibited more pronounced seasonal patterns, whereas in Wikipedia, seasonality of interest increased as bloom duration increased. Together, our results suggest that people's digital interactions with nature may be inherently different depending on the sources explored, which may affect use of this information for conservation. Although culturomics holds much promise, better understanding of its underpinnings is important when translating insights into conservation actions.  相似文献   
996.
Abstract: Informally gathered species lists are a potential source of data for conservation biology, but most remain unused because of questions of reliability and statistical issues. We applied two alternative analytical methods (contingency tests and occupancy modeling) to a 35‐year data set (1973–2007) to test hypotheses about local bird extinction. We compiled data from bird lists collected by expert amateurs and professional scientists in a 2‐km2 fragment of lowland tropical forest in coastal Ecuador. We tested the effects of the following on local extinction: trophic level, sociality, foraging specialization, light tolerance, geographical range area, and biogeographic source. First we assessed extinction on the basis of the number of years in which a species was not detected on the site and used contingency tests with each factor to compare the frequency of expected and observed extinction events among different species categories. Then we defined four multiyear periods that reflected different stages of deforestation and isolation of the study site and used occupancy modeling to test extinction hypotheses singly and in combination. Both types of analyses supported the biogeographic source hypothesis and the species‐range hypothesis as causes of extinction; however, occupancy modeling indicated the model incorporating all factors except foraging specialization best fit the data.  相似文献   
997.
Abstract: The influence of non‐native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non‐native species may both harm and provide refugia for endangered native species. The invasive non‐native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats[Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non‐native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non‐native species can be used to mitigate the impacts of other non‐native species on native species.  相似文献   
998.
Abstract: Some conservationists argue for a focused effort to protect the most critically endangered species, and others suggest a large‐scale endeavor to safeguard common species across large areas. Similar arguments are applicable to the distribution of scientific effort among species. Should conservation scientists focus research efforts on threatened species, common species, or do all species deserve equal attention? We assessed the scientific equity among 1909 mammals, birds, reptiles, and amphibians of southern Africa by relating the number of papers written about each species to their status on the International Union for Conservation of Nature Red List. Threatened large mammals and reptiles had more papers written about them than their nonthreatened counterparts, whereas threatened small mammals and amphibians received less attention than nonthreatened species. Threatened birds received an intermediate amount of attention in the scientific literature. Thus, threat status appears to drive scientific effort among some animal groups, whereas other factors (e.g., pest management and commercial interest) appear to dictate scientific investment in particular species of other groups. Furthermore, the scientific investment per species differed greatly between groups—the mean number of papers per threatened large mammal eclipsed that of threatened reptiles, birds, small mammals, and amphibians by 2.6‐, 15‐, 216‐, and more than 500‐fold, respectively. Thus, in the eyes of science, all species are not created equal. A few species commanded a great proportion of scientific attention, whereas for many species information that might inform conservation is virtually nonexistent.  相似文献   
999.
Abstract: Biodiversity is too complex to measure directly, so conservation planning must rely on surrogates to estimate the biodiversity of sites. The species richness of selected taxa is often used as a surrogate for the richness of other taxa. Surrogacy values of taxa have been evaluated in diverse contexts, yet broad trends in their effectiveness remain unclear. We reviewed published studies testing the ability of species richness of surrogate taxa to capture the richness of other (target) taxa. We stratified studies into two groups based on whether a complementarity approach (surrogates used to select a combination of sites that together maximize total species richness for the taxon) or a richness‐hotspot approach (surrogates used to select sites containing the highest species richness for the taxon) was used. For each comparison of one surrogate taxon with one target, we used the following predictor variables: biome, spatial extent of study area, surrogate taxon, and target taxon. We developed a binary response variable based on whether the surrogate taxon provided better than random representation of the target taxon. For studies that used an evaluation approach that was not based on better than random representation of target taxa, we based the response variable on the interpretation of results in the original study. We performed a categorical regression to elucidate trends in the effectiveness of surrogate taxa with regard to each of the predictor variables. A surrogate was 25% more likely to be effective with a complementarity approach than with a hotspot approach. For hotspot‐based approaches, biome, extent of study, surrogate taxon, and target taxon significantly influenced effectiveness of the surrogate. For complementarity‐based approaches, biome, extent, and surrogate taxon significantly influenced effectiveness of the surrogate. For all surrogate evaluations, biome explained the greatest amount of variation in surrogate effectiveness. From most to least, extent, surrogate taxon, and target taxon explained the most variation after biome. Surrogate taxa were most effective in grasslands and in some cases boreal zones, deserts, and tropical forests; surrogate taxa also were more effective in studies examining larger areas. Herpetofauna were the most effective taxon as both surrogate and target when a richness‐hotspot approach was used; however, herpetofauna were analyzed in fewer studies, so this result is tentative. For complementarity approaches, taxa that are easy to measure and tend to have a large number of habitat specialists distributed collectively across broad environmental gradients (e.g., plants, birds, and mammals) were the most effective surrogates.  相似文献   
1000.
The effect of heterogeneous environments upon the dynamics of invasion and the eradication or control of invasive species is poorly understood, although it is a major challenge for biodiversity conservation. Here, we first investigate how the probability and time for invasion are affected by spatial heterogeneity. Then, we study the effect of control program strategies (e.g. species specificity, spatial scale of action, detection and eradication efficiency) on the success and time of eradication. We find that heterogeneity increases both the invasion probability and the time to invasion. Heterogeneity also reduces the probability of eradication but does not change the time taken for successful eradication. We confirm that early detection of invasive species reduces the time until eradication, but we also demonstrate that this is true only if the local control action is sufficiently efficient. The criterion of removal efficiency is even more important for an eradication program than simply ensuring control effort when the invasive species is not abundant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号