首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   14篇
基础理论   65篇
  2023年   7篇
  2022年   4篇
  2021年   9篇
  2020年   11篇
  2019年   6篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   2篇
  2014年   7篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
61.
Biodiversity conservation decisions are difficult, especially when they involve differing values, complex multidimensional objectives, scarce resources, urgency, and considerable uncertainty. Decision science embodies a theory about how to make difficult decisions and an extensive array of frameworks and tools that make that theory practical. We sought to improve conceptual clarity and practical application of decision science to help decision makers apply decision science to conservation problems. We addressed barriers to the uptake of decision science, including a lack of training and awareness of decision science; confusion over common terminology and which tools and frameworks to apply; and the mistaken impression that applying decision science must be time consuming, expensive, and complex. To aid in navigating the extensive and disparate decision science literature, we clarify meaning of common terms: decision science, decision theory, decision analysis, structured decision-making, and decision-support tools. Applying decision science does not have to be complex or time consuming; rather, it begins with knowing how to think through the components of a decision utilizing decision analysis (i.e., define the problem, elicit objectives, develop alternatives, estimate consequences, and perform trade-offs). This is best achieved by applying a rapid-prototyping approach. At each step, decision-support tools can provide additional insight and clarity, whereas decision-support frameworks (e.g., priority threat management and systematic conservation planning) can aid navigation of multiple steps of a decision analysis for particular contexts. We summarize key decision-support frameworks and tools and describe to which step of a decision analysis, and to which contexts, each is most useful to apply. Our introduction to decision science will aid in contextualizing current approaches and new developments, and help decision makers begin to apply decision science to conservation problems.  相似文献   
62.
As declines in biodiversity accelerate, there is an urgent imperative to ensure that every dollar spent on conservation counts toward species protection. Systematic conservation planning is a widely used approach to achieve this, but there is growing concern that it must better integrate the human social dimensions of conservation to be effective. Yet, fundamental insights about when social data are most critical to inform conservation planning decisions are lacking. To address this problem, we derived novel principles to guide strategic investment in social network information for systematic conservation planning. We considered the common conservation problem of identifying which social actors, in a social network, to engage with to incentivize conservation behavior that maximizes the number of species protected. We used simulations of social networks and species distributed across network nodes to identify the optimal state-dependent strategies and the value of social network information. We did this for a range of motif network structures and species distributions and applied the approach to a small-scale fishery in Kenya. The value of social network information depended strongly on both the distribution of species and social network structure. When species distributions were highly nested (i.e., when species-poor sites are subsets of species-rich sites), the value of social network information was almost always low. This suggests that information on how species are distributed across a network is critical for determining whether to invest in collecting social network data. In contrast, the value of social network information was greatest when social networks were highly centralized. Results for the small-scale fishery were consistent with the simulations. Our results suggest that strategic collection of social network data should be prioritized when species distributions are un-nested and when social networks are likely to be centralized.  相似文献   
63.
64.
Abstract: The new approaches advocated by the conservation community to integrate conservation and livelihood development now explicitly address landscape mosaics composed of agricultural and forested land rather than only protected areas and largely intact forests. We refer specifically to a call by Harvey et al. (2008) to develop a new approach based on six strategies to integrate biodiversity conservation with sustainable livelihoods in Mesoamerican landscape mosaics. We examined the applicability of this proposal to the coffee agroforests of the Western Ghats, India. Of the six strategies, only one directly addresses livelihood conditions. Their approach has a clear emphasis on conservation and, as currently formulated risks repeating the failures of past integrated conservation and development projects. It fails to place the aspirations of farmers at the core of the agenda. Thus, although we acknowledge and share the broad vision and many of the ideas proposed by this approach, we urge more balanced priority setting by emphasizing people as much as biodiversity through a careful consideration of local livelihood needs and aspirations.  相似文献   
65.
The term conservation technology is applied widely and loosely to any technology connected to conservation. This overly broad understanding can lead to confusion around the actual mechanisms of conservation in a technological system, which can result in neglect and underdevelopment of the human dimensions of conservation technology. Ultimately, this hinders its effectiveness as technological fixes for conservation problems. Through a process of concept mapping based on key case studies and literature, I devised precise definitions of marine conservation technology and technological marine conservation system. Concerns about the use of marine conservation technologies included unintended consequences, halfway technologies that address the symptoms but not the causes of problems, and misguided techno-optimism (i.e., technology is a panacea that can solve any problem). Technology and technological systems can have power, politics, and culture, and these characteristics can influence the contextual fit of a technology, requiring that technology be thoughtfully created or adapted to the circumstances in which it will be used. Power, politics, and culture inherent in technology can also influence the distribution of conservation risks and benefits and potentially widen gaps in wealth, privilege, opportunities, and justice. Addressing these concerns can potentially be achieved through the better integration of social sciences in marine conservation technology and technological marine conservation system design and development and the application of the social-ecological-technological systems framework. This framework melds key concepts from the socioecological systems framework and science and technology studies. It recognizes as and elevates technology to be a central actor that can shape societies and the natural world. Such a framework incorporates broader understanding, so that the values and concerns of society are more effectively addressed in the creation and implementation of marine conservation technologies and technological marine conservation systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号