首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   33篇
基础理论   134篇
  2024年   4篇
  2023年   4篇
  2022年   7篇
  2021年   11篇
  2020年   10篇
  2019年   13篇
  2018年   8篇
  2017年   11篇
  2016年   5篇
  2015年   11篇
  2014年   9篇
  2013年   16篇
  2012年   5篇
  2011年   5篇
  2010年   8篇
  2009年   1篇
  2008年   6篇
排序方式: 共有134条查询结果,搜索用时 0 毫秒
101.
    
Natural forest regrowth is a cost-effective, nature-based solution for biodiversity recovery, yet different socioenvironmental factors can lead to variable outcomes. A critical knowledge gap in forest restoration planning is how to predict where natural forest regrowth is likely to lead to high levels of biodiversity recovery, which is an indicator of conservation value and the potential provisioning of diverse ecosystem services. We sought to predict and map landscape-scale recovery of species richness and total abundance of vertebrates, invertebrates, and plants in tropical and subtropical second-growth forests to inform spatial restoration planning. First, we conducted a global meta-analysis to quantify the extent to which recovery of species richness and total abundance in second-growth forests deviated from biodiversity values in reference old-growth forests in the same landscape. Second, we employed a machine-learning algorithm and a comprehensive set of socioenvironmental factors to spatially predict landscape-scale deviation and map it. Models explained on average 34% of observed variance in recovery (range 9–51%). Landscape-scale biodiversity recovery in second-growth forests was spatially predicted based on socioenvironmental landscape factors (human demography, land use and cover, anthropogenic and natural disturbance, ecosystem productivity, and topography and soil chemistry); was significantly higher for species richness than for total abundance for vertebrates (median range-adjusted predicted deviation 0.09 vs. 0.34) and invertebrates (0.2 vs. 0.35) but not for plants (which showed a similar recovery for both metrics [0.24 vs. 0.25]); and was positively correlated for total abundance of plant and vertebrate species (Pearson r = 0.45, p = 0.001). Our approach can help identify tropical and subtropical forest landscapes with high potential for biodiversity recovery through natural forest regrowth.  相似文献   
102.
Data on the location and extent of protected areas, ecosystems, and species’ distributions are essential for determining gaps in biodiversity protection and identifying future conservation priorities. However, these data sets always come with errors in the maps and associated metadata. Errors are often overlooked in conservation studies, despite their potential negative effects on the reported extent of protection of species and ecosystems. We used 3 case studies to illustrate the implications of 3 sources of errors in reporting progress toward conservation objectives: protected areas with unknown boundaries that are replaced by buffered centroids, propagation of multiple errors in spatial data, and incomplete protected‐area data sets. As of 2010, the frequency of protected areas with unknown boundaries in the World Database on Protected Areas (WDPA) caused the estimated extent of protection of 37.1% of the terrestrial Neotropical mammals to be overestimated by an average 402.8% and of 62.6% of species to be underestimated by an average 10.9%. Estimated level of protection of the world's coral reefs was 25% higher when using recent finer‐resolution data on coral reefs as opposed to globally available coarse‐resolution data. Accounting for additional data sets not yet incorporated into WDPA contributed up to 6.7% of additional protection to marine ecosystems in the Philippines. We suggest ways for data providers to reduce the errors in spatial and ancillary data and ways for data users to mitigate the effects of these errors on biodiversity assessments. Efectos de Errores y Vacíos en Conjuntos de Datos Espaciales sobre la Evaluación del Progreso de la Conservación  相似文献   
103.
104.
         下载免费PDF全文
Diagnosing the processes that threaten species persistence is critical for recovery planning and risk forecasting. Dominant threats are typically inferred by experts on the basis of a patchwork of informal methods. Transparent, quantitative diagnostic tools would contribute much‐needed consistency, objectivity, and rigor to the process of diagnosing anthropogenic threats. Long‐term census records, available for an increasingly large and diverse set of taxa, may exhibit characteristic signatures of specific threatening processes and thereby provide information for threat diagnosis. We developed a flexible Bayesian framework for diagnosing threats on the basis of long‐term census records and diverse ancillary sources of information. We tested this framework with simulated data from artificial populations subjected to varying degrees of exploitation and habitat loss and several real‐world abundance time series for which threatening processes are relatively well understood: bluefin tuna (Thunnus maccoyii) and Atlantic cod (Gadus morhua) (exploitation) and Red Grouse (Lagopus lagopus scotica) and Eurasian Skylark (Alauda arvensis) (habitat loss). Our method correctly identified the process driving population decline for over 90% of time series simulated under moderate to severe threat scenarios. Successful identification of threats approached 100% for severe exploitation and habitat loss scenarios. Our method identified threats less successfully when threatening processes were weak and when populations were simultaneously affected by multiple threats. Our method selected the presumed true threat model for all real‐world case studies, although results were somewhat ambiguous in the case of the Eurasian Skylark. In the latter case, incorporation of an ancillary source of information (records of land‐use change) increased the weight assigned to the presumed true model from 70% to 92%, illustrating the value of the proposed framework in bringing diverse sources of information into a common rigorous framework. Ultimately, our framework may greatly assist conservation organizations in documenting threatening processes and planning species recovery. Inferencia la Naturaleza de las Amenazas Antropogénicas para los Registros de Abundancia a Largo Plazo  相似文献   
105.
An overarching challenge of natural resource management and biodiversity conservation is that relationships between people and nature are difficult to integrate into tools that can effectively guide decision making. Social–ecological vulnerability offers a valuable framework for identifying and understanding important social–ecological linkages, and the implications of dependencies and other feedback loops in the system. Unfortunately, its implementation at local scales has hitherto been limited due at least in part to the lack of operational tools for spatial representation of social–ecological vulnerability. We developed a method to map social–ecological vulnerability based on information on human–nature dependencies and ecosystem services at local scales. We applied our method to the small‐scale fishery of Moorea, French Polynesia, by combining spatially explicit indicators of exposure, sensitivity, and adaptive capacity of both the resource (i.e., vulnerability of reef fish assemblages to fishing) and resource users (i.e., vulnerability of fishing households to the loss of fishing opportunity). Our results revealed that both social and ecological vulnerabilities varied considerably through space and highlighted areas where sources of vulnerability were high for both social and ecological subsystems (i.e., social–ecological vulnerability hotspots) and thus of high priority for management intervention. Our approach can be used to inform decisions about where biodiversity conservation strategies are likely to be more effective and how social impacts from policy decisions can be minimized. It provides a new perspective on human–nature linkages that can help guide sustainability management at local scales; delivers insights distinct from those provided by emphasis on a single vulnerability component (e.g., exposure); and demonstrates the feasibility and value of operationalizing the social–ecological vulnerability framework for policy, planning, and participatory management decisions.  相似文献   
106.
    
Reintroductions are important components of conservation and recovery programs for rare plant species, but their long-term success rates are poorly understood. Previous reviews of plant reintroductions focused on short-term (e.g., ≤3 years) survival and flowering of founder individuals rather than on benchmarks of intergenerational persistence, such as seedling recruitment. However, short-term metrics may obscure outcomes because the unique demographic properties of reintroductions, including small size and unstable stage structure, could create lags in population growth. We used time-to-event analysis on a database of unusually well-monitored and long-term (4–28 years) reintroductions of 27 rare plant species to test whether life-history traits and population characteristics of reintroductions create time-lagged responses in seedling recruitment (i.e., recruitment time lags [RTLs]), an important benchmark of success and indicator of persistence in reintroduced populations. Recruitment time lags were highly variable among reintroductions, ranging from <1 to 17 years after installation. Recruitment patterns matched predictions from life-history theory with short-lived species (fast species) exhibiting consistently shorter and less variable RTLs than long-lived species (slow species). Long RTLs occurred in long-lived herbs, especially in grasslands, whereas short RTLs occurred in short-lived subtropical woody plants and annual herbs. Across plant life histories, as reproductive adult abundance increased, RTLs decreased. Highly variable RTLs were observed in species with multiple reintroduction events, suggesting local processes are just as important as life-history strategy in determining reintroduction outcomes. Time lags in restoration outcomes highlight the need to scale success benchmarks in reintroduction monitoring programs with plant life-history strategies and the unique demographic properties of restored populations. Drawing conclusions on the long-term success of plant reintroduction programs is premature given that demographic processes in species with slow life-histories take decades to unfold.  相似文献   
107.
    
Contemporary wildlife disease management is complex because managers need to respond to a wide range of stakeholders, multiple uncertainties, and difficult trade-offs that characterize the interconnected challenges of today. Despite general acknowledgment of these complexities, managing wildlife disease tends to be framed as a scientific problem, in which the major challenge is lack of knowledge. The complex and multifactorial process of decision-making is collapsed into a scientific endeavor to reduce uncertainty. As a result, contemporary decision-making may be oversimplified, rely on simple heuristics, and fail to account for the broader legal, social, and economic context in which the decisions are made. Concurrently, scientific research on wildlife disease may be distant from this decision context, resulting in information that may not be directly relevant to the pertinent management questions. We propose reframing wildlife disease management challenges as decision problems and addressing them with decision analytical tools to divide the complex problems into more cognitively manageable elements. In particular, structured decision-making has the potential to improve the quality, rigor, and transparency of decisions about wildlife disease in a variety of systems. Examples of management of severe acute respiratory syndrome coronavirus 2, white-nose syndrome, avian influenza, and chytridiomycosis illustrate the most common impediments to decision-making, including competing objectives, risks, prediction uncertainty, and limited resources.  相似文献   
108.
Abstract: Predation pressure on vulnerable bird species has made predator control an important issue for international nature conservation. Predator removal by culling or translocation is controversial, expensive, and time‐consuming, and results are often temporary. Thus, it is important to assess its effectiveness from all available evidence. We used explicit systematic review methodology to determine the impact of predator removal on four measurable responses in birds: breeding performance (hatching success and fledging success) and population size (breeding and postbreeding). We used meta‐analysis to summarize results from 83 predator removal studies from six continents. We also investigated whether characteristics of the prey, predator species, location, and study methodology explained heterogeneity in effect sizes. Removing predators increased hatching success, fledging success, and breeding populations. Removing all predator species achieved a significantly larger increase in breeding population than removing only a subset. Postbreeding population size was not improved on islands, or overall, but did increase on mainlands. Heterogeneity in effect sizes for the four population parameters was not explained by whether predators were native or introduced; prey were declining, migratory, or game species; or by the study methodology. Effect sizes for fledging success were smaller for ground‐nesting birds than those that nest elsewhere, but the difference was not significant. We conclude that current evidence indicates that predator removal is an effective strategy for the conservation of vulnerable bird populations. Nevertheless, the ethical and practical problems associated with predator removal may lead managers to favor alternative, nonlethal solutions. Research is needed to provide and synthesize data to determine whether these are effective management practices for future policies on bird conservation.  相似文献   
109.
    
The 2010 Deepwater Horizon (DWH) oil spill exposed common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana to heavy oiling that caused increased mortality and chronic disease and impaired reproduction in surviving dolphins. We conducted photographic surveys and veterinary assessments in the decade following the spill. We assigned a prognostic score (good, fair, guarded, poor, or grave) for each dolphin to provide a single integrated indicator of overall health, and we examined temporal trends in prognostic scores. We used expert elicitation to quantify the implications of trends for the proportion of the dolphins that would recover within their lifetime. We integrated expert elicitation, along with other new information, in a population dynamics model to predict the effects of observed health trends on demography. We compared the resulting population trajectory with that predicted under baseline (no spill) conditions. Disease conditions persisted and have recently worsened in dolphins that were presumably exposed to DWH oil: 78% of those assessed in 2018 had a guarded, poor, or grave prognosis. Dolphins born after the spill were in better health. We estimated that the population declined by 45% (95% CI 14–74) relative to baseline and will take 35 years (95% CI 18–67) to recover to 95% of baseline numbers. The sum of annual differences between baseline and injured population sizes (i.e., the lost cetacean years) was 30,993 (95% CI 6607–94,148). The population is currently at a minimum point in its recovery trajectory and is vulnerable to emerging threats, including planned ecosystem restoration efforts that are likely to be detrimental to the dolphins’ survival. Our modeling framework demonstrates an approach for integrating different sources and types of data, highlights the utility of expert elicitation for indeterminable input parameters, and emphasizes the importance of considering and monitoring long-term health of long-lived species subject to environmental disasters. Article impact statement: Oil spills can have long-term consequences for the health of long-lived species; thus, effective restoration and monitoring are needed.  相似文献   
110.
Effective population size (N(e)) determines the strength of genetic drift and can influence the level of genetic diversity a population can maintain. Assessing how changes in demographic rates associated with environmental variables and management actions affect N(e) thus can be crucial to the conservation of endangered species. Calculation of N(e) through demographic models makes it possible to use elasticity analyses to study this issue. The elasticity of N(e) to a given vital rate is the proportional change in N(e) associated with a proportional increase in that vital rate. In addition, demographic models can be used to study N(e) and population growth rate (λ) simultaneously. Simultaneous examination is important because some vital rates differ diametrically in their associations with λ and N(e). For example, in some cases increasing these vital rates increases λ and decreases N(e). We used elasticity analysis to study the effect of stage-specific survival and flowering rates on N(e), annual effective population size (N(a)), and λ in seven populations of the endangered plant Austrian dragonhead (Dracocephalum austriacum). In populations with λ ≥ 1, the elasticities of N(e) and N(a) were similar to those of λ. Survival rates of adults were associated with greater elasticities than survival rates of juveniles, flowering rates, or fecundity. In populations with λ < 1, N(e) and N(a) exhibited greater elasticities to juvenile than to adult vital rates. These patterns are similar to those observed in other species with similar life histories. We did not observe contrasting effects of any vital rate on λ and N(e); thus, management actions that increase the λ of populations of Austrian dragonhead will not increase genetic drift. Our results show that elasticity analyses of N(e) and N(a) can complement elasticity analysis of λ. Moreover, such analyses do not require more data than standard matrix models of population dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号