首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   78篇
  国内免费   195篇
安全科学   11篇
废物处理   3篇
环保管理   30篇
综合类   425篇
基础理论   44篇
污染及防治   13篇
评价与监测   88篇
社会与环境   22篇
灾害及防治   71篇
  2024年   8篇
  2023年   21篇
  2022年   36篇
  2021年   61篇
  2020年   48篇
  2019年   36篇
  2018年   42篇
  2017年   35篇
  2016年   40篇
  2015年   41篇
  2014年   34篇
  2013年   34篇
  2012年   36篇
  2011年   45篇
  2010年   24篇
  2009年   27篇
  2008年   8篇
  2007年   22篇
  2006年   21篇
  2005年   14篇
  2004年   10篇
  2003年   17篇
  2002年   10篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1986年   2篇
排序方式: 共有707条查询结果,搜索用时 953 毫秒
381.
小型人工湖泊水环境变化特征分析及驱动因子识别   总被引:1,自引:0,他引:1  
小型人工湖泊能够改善城市水生态环境,但其易受外界环境的影响而使水体发生污染。为了探析小型人工湖泊水质和底泥中污染物的变化特征及引起水质污染的主要驱动因子,以郑州大学新校区的眉湖为例,结合现场监测与实验室检测数据,分析了水质和底泥中污染物的变化特征及作用机制;在分析水质影响因子间相关关系的基础上,通过主成分和主因子分析识别了影响小型人工湖泊水质的主要驱动因子,即透明度、水温、p H值、电导率、氧化还原电位、叶绿素a、藻类、流速、总磷和总氮。  相似文献   
382.
采用PM2.5质量浓度长期连续观测资料,结合地面气象资料和后向轨迹方法,分析2009-2018年天津地区PM2.5质量浓度的长期变化趋势,并探讨气象条件对其浓度变化的影响.结果表明,2013年受不利天气影响,PM2.5质量浓度达到近10 a来的峰值,其后逐年下降,2018年年均值降至52 μg·m-3,与优良天气和重污染及以上天气发生频率的年际变化趋势一致.相关性分析和主成分分析都表明相对湿度、风速和混合层厚度是影响天津地区,尤其是冬季PM2.5浓度的主要气象影响因素.不同季节下随着相对湿度增高,地面风速减小,混合层厚度降低,均有PM2.5污染加重的趋势,其中冬季差异最大,与该季节气象因素剧烈多变、静稳天气和寒潮交替发生有关.后向轨迹的聚类分析结果表明,途经天津偏南区域的短距离近地气流下PM2.5质量浓度较高,与该气流下易形成静稳天气有关,春季西北方向的长距离轨迹对应较高浓度的PM2.5则与沙尘天气有关.  相似文献   
383.
济南市冬季一次典型重污染过程分析   总被引:2,自引:1,他引:2       下载免费PDF全文
为掌握济南市重污染天气发生规律,从而更好地为重污染天气预报预警和大气污染防治提供参考,采用空气质量监测数据、气象观测资料、雷达探测资料及轨迹模式模拟相结合的方法,对济南市2016年12月31日-2017年1月7日的持续性重污染过程,从污染演变过程、环流背景分析、气象要素特征和区域污染传输等多方面分析其形成原因及主要影响因素.结果表明:此次重污染过程期间首要污染物为颗粒物,ρ(PM10)平均值为318 μg/m3,ρ(PM2.5)平均值为200 μg/m3;地面风速在0.6~1.8 m/s范围内,风力均为1~2级,相对湿度为68%~95%,平均相对湿度为81%.在重污染过程中,从地面至800 m左右高度始终维持较强逆温层,逆温频次高达91.1%,污染边界层高度较低,大部分时间都在500 m以下.采用情景模拟分析方法计算得到,区域输送对济南市PM2.5的贡献率为20%~35%.研究显示:此次重污染过程是在区域性污染背景下由本地不利的扩散条件造成的,静稳大气形势提供有利的环流背景,平流雾、辐射雾交替产生,持续性的高湿加重了污染程度;近地面的静风、高湿,垂直方向的双逆温层甚至多逆温层的结构是影响此次重污染过程的重要气象要素;区域性污染传输对此次重污染天气的发展有显著贡献,污染初期主要来自河北省中南部的输送,随着污染加重,有来自偏南、偏东方向的局地气团输送.   相似文献   
384.
利用2015—2016年西南涡个例数据与同期的细颗粒物(PM2.5)浓度数据进行时空匹配,对比分析西南涡过境前后四川盆地PM2.5浓度变化,并结合温度、湿度、风等气象要素及逆温特征,深入研究西南涡对PM2.5污染的影响机理.结果表明:①2015—2016年四川盆地共182个西南涡,其中,干涡72个(多集中在春季),弱降水涡75个(多集中在春季和冬季),强降水涡35个(多集中在夏季).②总体而言,干涡过境使四川盆地PM2.5浓度增加,降水涡使PM2.5浓度减小,强降水涡的削减作用强于弱降水涡.全年来看,干涡过境使四川盆地PM2.5浓度增加10.52%,强、弱降水涡过境分别使PM2.5浓度减小29.72%、9.71%.③除降水外,3类西南涡对PM2.5影响的主导气象要素和逆温条件为相对湿度、风速和逆温层底高.而主导季节差异的气象要素和逆温条件各异:干涡的主导因素是温度垂直变化和逆温强度,在温度随高度递减和逆温强度较小的春季和夏季,对PM2.5浓度的增幅减小(甚至有削减作用);弱降水涡的主导因素是湿度和风速、逆温强度和逆温层厚度,春季其过境时湿度和风速最小,逆温强度和逆温厚度仅次于冬季,甚至使PM2.5浓度增加;强降水涡的主导因素是风速、湿度和逆温层底高,夏季其过境时风速和低层湿度最小,逆温层底高最低,对PM2.5的削减作用远弱于其他季节.  相似文献   
385.
利用2017~2019年夏、冬季天津市大气污染物监测和气象观测数据,基于天津气象铁塔垂直观测,针对大气垂直扩散条件对PM2.5和O3的影响进行研究.结果显示:近地面PM2.5浓度随高度的升高而下降,O3浓度则随高度的升高而上升,受大气垂直扩散条件的季节和日变化影响,冬季,地面与120m PM2.5质量浓度相关明显,与200m PM2.5质量浓度无明显相关.夏季,120m和200m PM2.5质量浓度相关系数为0.72,午后通常出现120m和200m PM2.5质量浓度高于地面的情况.夏季,不同高度O3浓度差异小于冬季,地面与120m高度O3浓度接近.以大气稳定度、逆温强度和气温递减率作为大气垂直扩散指标,对地面PM2.5和O3垂直分布具有指示作用.冬季,TKE与PM2.5质量浓度相关系数为到-0.65,夏季,TKE与ΔPM2.5相关系数为-0.39.夏、冬季TKE与地面O3浓度的相关系数分别为0.46和0.53,与ΔO3的相关系数分别为0.73和0.70.弱下沉运动对地面O3浓度影响较强,40m高度垂直运动速度与地面O3浓度的相关系数在冬、夏季分别为-0.54和-0.61.对冬季典型PM2.5重污染过程的分析发现,雾霾的生消维持和PM2.5浓度的变化与大气稳定度、气温垂直递减率和TKE的变化有直接关系.对夏季典型O3污染过程的分析发现,近地面的O3污染的形成与有利光化学反应的气象条件密切相关,同时,垂直向下输送和有利垂直扩散条件对O3污染的形成和爆发影响明显.  相似文献   
386.
2013年1月南京出现了长时间、大范围和高浓度的灰霾. 利用三波长光声黑碳光度计(PASS-3)对南京北郊气溶胶的吸收和散射系数进行实时在线原位观测. 结果表明,霾天气溶胶吸收和散射系数平均值分别为(83.20±35.24) Mm-1和(670.16±136.44) Mm-1,分别为清洁天的3.85倍和3.45倍. 吸收和散射系数均呈现早晚高中午低的双峰型日变化特征,单散射反照率和散射埃系数平均值分别为(0.89±0.04)和(1.30±0.27),说明霾天气溶胶主要以细粒子中的散射性物质为主. 降雨对气溶胶有明显的清除作用. 地面风速与气溶胶吸收和散射呈负相关关系,与单散射反照率和埃系数呈正相关; 东南风时气溶胶散射系数最大,西南风时气溶胶吸收系数最大. 3次霾污染事件中,Haze 1主要受来自北部的老化污染气团影响,Haze 2主要受来自西南的生物质燃烧污染气团影响,而Haze 3主要由固定源污染引起.  相似文献   
387.
青岛大气颗粒物数浓度变化及对能见度的影响   总被引:6,自引:5,他引:6  
为研究青岛地面大气颗粒物数浓度的变化及对能见度的影响,2010年9月~2011年8月使用便携式light house激光粒子计数器进行了大气颗粒物数浓度观测,利用Hysplit模式计算大气颗粒物的后向轨迹,运用统计分析方法初步探讨了气象因子对大气颗粒物数浓度和能见度的影响.结果表明,青岛大气颗粒物数浓度冬春最高,秋季次之,夏季最低;源自新疆、甘肃一带的气团颗粒物数浓度偏高,而来自于东北方向及海上的大气颗粒物数浓度较低;大气颗粒物数浓度变化与风速、相对湿度和混合层高度的变化呈现较好的负相关关系.当气团来源于西或西北方向,地面风向为南到东南风且混合层高度较低时,细粒子数浓度较高,容易出现低能见度现象.  相似文献   
388.
从野战气象装备保障的实际出发,简要、定性地分析了野战气象装备当前所面临的电磁环境,提出了野战气象保障分队必须强化野战气象装备指挥、维修、器材供应及防护等"四个能力"。在此基础上,进一步阐明了野战气象装备保障建设和准备需把握的问题。  相似文献   
389.
1995年9、10月间在秦山三期核电厂址进行了气象相关实验,即在秦山一、二、三期进行低空风、温与地面风的同步观测,在三期厂址进行平衡球测扩散参数,风洞模拟实验测量建筑群与对流与扩散参数的影响。并探讨如何应用气象相关实验结果由已建厂址的气象数据来估算新建厂址年均扩散因子的方法与公式。  相似文献   
390.
赵伟  王硕  庞晓蝶  高博  卢清  刘明  陈来国  范绍佳 《环境科学》2022,43(12):5399-5406
基于2015~2021年环境监测数据和气象再分析资料,利用Mann-Kendall检验法和Sen斜率法等统计手段揭示了陕西关中城市群臭氧(O3)浓度时空变化特征和年际变化趋势,并从气象、排放源和区域传输等方面分析了趋势形成的原因.结果表明:①2015~2021年,关中城市群O3浓度评价值(MDA8第90百分位数)最高的城市是咸阳市,浓度评价值多年平均值为162 μg·m-3,O3浓度平均值(MDA8年均值)和O3浓度背景值(MDA8第5百分位数)最高的城市是铜川市.②关中城市群O3浓度表现为单峰型日变化特征,并呈现夏季>春季>秋季>冬季的年变化特征.夏季咸阳O3浓度平均值最高,其他季节铜川O3浓度平均值最高.③2015~2021年,陕西关中城市群O3浓度背景值呈现出上升趋势,区域浓度背景值平均上升速率为2.20 μg·(m3·a)-1,但是O3浓度评价值并未表现出有统计显著性的变化趋势.此外,关中城市群O3浓度变化趋势与季节密切相关,其中冬季O3浓度上升趋势显著,其他季节大部分城市O3浓度无明显变化趋势.④关中城市群及周边地区挥发性有机物(VOCs)减排幅度普遍小于氮氧化物(NOx)的不合理减排结构、滴定效应减弱以及区域传输等因素共同作用,导致关中城市群冬季O3浓度升高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号