首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   75篇
  国内免费   203篇
安全科学   11篇
废物处理   3篇
环保管理   30篇
综合类   434篇
基础理论   44篇
污染及防治   20篇
评价与监测   88篇
社会与环境   22篇
灾害及防治   71篇
  2024年   9篇
  2023年   24篇
  2022年   38篇
  2021年   64篇
  2020年   48篇
  2019年   36篇
  2018年   42篇
  2017年   40篇
  2016年   40篇
  2015年   43篇
  2014年   34篇
  2013年   34篇
  2012年   36篇
  2011年   45篇
  2010年   24篇
  2009年   27篇
  2008年   8篇
  2007年   22篇
  2006年   21篇
  2005年   14篇
  2004年   10篇
  2003年   17篇
  2002年   10篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1986年   2篇
排序方式: 共有723条查询结果,搜索用时 0 毫秒
481.
气象条件变化对复合污染的发生发展起重要作用,基于PM2.5和O3不同的污染形成机制,利用污染气象长期观测数据,分别采用统计运算和深度学习方法,构建了PM2.5和O3气象条件指数,形成以气象条件指数开展区域大气复合污染气象特征和影响贡献的研究方法,并对剔除区域气象差异影响的污染分布与变化进行了量化分析.结果表明,2021年夏季我国中东部重点区域污染气象条件整体上呈北差南优(指数:“2+26”城市>苏皖鲁豫交界>长三角地区),6月最差、 7月最好的分布特征,当区域内城市PM2.5气象条件指数>30且O3气象条件指数>100时,“双高”污染开始出现,随O3气象条件指数增大,“双高”频率不断升高;与上年同期相比,各地区ρ(PM2.5)受气象条件改善影响分别降低3.9、 3.3和1.4μg·m-3,平均占到各地ρ(PM2.5)降低的58.5%,O...  相似文献   
482.
为了能及时、准确的估算出PM2.5浓度及污染等级,分别构建了K最邻近模型(KNN)、BP神经网络模型(BPNN)、支持向量机回归模型(SVR)、高斯过程回归模型(GPR)、XGBoost模型和随机森林模型(RF)6个PM2.5浓度预测模型,选取江西省赣州市为实验区域,采用2017~2018年逐小时气象站数据、PM2.5浓度数据和Merra-2再分析数据开展PM2.5预测实验.结果表明,缺少污染物观测数据时,利用能见度和气象因子等数据也能较好的预测PM2.5浓度.在PM2.5浓度预测精度方面,XGBoost模型最高,随机森林模型次之,高斯过程回归模型最差.6个模型的预测精度总体呈现冬季最高,秋季和春季次之,夏季最低.XGBoost模型的PM2.5污染等级预测准确率高于其他模型,综合准确率达87.6%,并且XGBoost模型具有训练时间短,占用内存小等优点.XGBoost模型的变量重要性结果表明,能见度变量的重要性最高,相对湿度和时间变量次之.本研究可为环境部门准确预测、预报PM2.5浓度提供参考.  相似文献   
483.
南京城区冬季大气污染特征   总被引:3,自引:2,他引:3       下载免费PDF全文
为探究南京城区冬季主要大气污染物浓度变化规律,运用南京市空气自动监测站的φ(CO)、φ(O3)、φ(NO2)、φ(SO2)、ρ(PM2.5)和ρ(PM10)逐时资料,结合同期气象数据,分析了2014年冬季(2014年12月—2015年2月)南京城区大气污染浓度水平和变化特征,探讨2015年春节期间在实施减排措施下气象条件对空气质量的影响.结果表明:① 观测期φ(CO)日均值和φ(O3)小时均值未超过GB 3095—2012《环境空气质量标准》二级标准限值;ρ(PM2.5)、ρ(PM10)、φ(NO2)、φ(SO2)日均值分别超标44%、38%、34%、2%;ρ(PM2.5)、ρ(PM10)最大日均值分别为231和283 μg/m3,分别是GB 3095—2012二级标准限值的3.1、1.9倍. ② 日变化分析显示,φ(CO)与φ(NO2)呈早晚双峰型变化,与早晚交通高峰源排放有关;φ(O3)呈明显的单峰型,在午后出现峰值;φ(SO2)呈单峰型且夜间浓度低于白天;ρ(PM2.5)和ρ(PM10)为双峰型变化,峰值出现在10:00和22:00左右. ③ 南京地区污染物周末浓度整体高于工作日,其中周末φ(CO)、φ(NO2)和ρ(PM2.5)显著高于工作日,“周末效应”显著. ④ 2015年春节期间,南京实施减排措施后,即使在不利的气象条件下,污染物浓度也未出现明显升高,说明减排措施有效削弱了污染源的排放,是保持南京地区良好空气质量的重要因素.   相似文献   
484.
利用三峡库区33站1961~2006年逐日降水量、平均气温、最高气温、雾、雷暴资料,分析了库区干旱、洪涝、连阴雨、高温、雾、雷暴主要气象灾害的变化趋势。统计结果表明:近46年来,三峡库区平均年干旱日数呈不明显的增加趋势,春、夏、冬季干旱日数的年际间基本没有变化趋势,但秋季干旱日数年际间有明显的增多趋势,增多速率为41 d/10 a;春、夏季雨涝日数变化趋势不明显,秋季雨涝日数有微弱的减少趋势;三峡库区年平均连阴雨过程次数有微弱的减少趋势,连阴雨日数的减少趋势较明显;近34年三峡库区年雷暴日数呈明显减少趋势,减少速度为29 d/10 a;库区平均年雾日数没有明显变化趋势,但1999年以来减少趋势明显;近46年三峡库区平均年高温日数、危害性高温日数有微弱的减少趋势,平均年极端最高气温均没有明显变化趋势。  相似文献   
485.
为研究邯郸市PM2.5中碳组分的污染特征及其来源,于2017年4~12月采集PM2.5样品,用热光反射法(TOR)分析PM2.5中有机碳(OC)和元素碳(EC)的质量浓度.结果表明:邯郸市PM2.5和总碳气溶胶(TCA)质量浓度的年均值分别为(88.87±58.89)μg/m3和(31.45±23.35)μg/m3,PM2.5质量浓度超标率为50%,TCA/PM2.5比率的年均值为(38.23%±14.61%),表明邯郸市碳组分污染严重.冬季PM2.5中TCA质量浓度均值为(68.06±23.77)μg/m3,TCA/PM2.5比率的均值为(46.86%±10.07%),OC(37.09±13.05)μg/m3和EC(8.72±3.78)μg/m3浓度明显高于其它季节,表明冬季碳组分污染较为严重.各季节OC/EC比值均大于2,表明邯郸市全年均受二次有机碳(SOC)的污染;OC、EC及SOC与SO2、NO2呈显著正相关,与O3呈显著负相关,尤其是与NO2相关关系最强,说明邯郸市碳质气溶胶可能受到机动车尾气排放的影响.对8种碳组分进行主成分分析,发现道路扬尘、燃煤排放和机动车尾气是邯郸市PM2.5中OC和EC的主要贡献源.  相似文献   
486.
利用地面常规气象观测资料、NCEP(National Centers for Environmental Prediction)再分析资料、AQI(空气质量指数)、ρ(PM2.5)、ρ(PM10)等大气环境监测数据,对2016年12月江苏省连续出现的两次大范围大气污染过程进行了对比分析.结果表明:这两次连续污染天气过程可分为颗粒物积聚-清除-再积聚-彻底清除4个阶段,相应地,地面形势表现为均压场-低压倒槽-西路冷空气-东路冷空气.第1次污染天气形成和维持主要是长时间受均压场控制、近地层逆温和高相对湿度有利于颗粒物积聚;第2次污染天气形成和维持主要是因西路冷空气南下、上游重污染地区颗粒物随冷空气向江苏省输送.持续降水和持续2.0 m/s以上偏东风对大气中颗粒物有较明显的清除作用.淮北西部垂直、水平扩散条件差、降水清除时间短,导致该地区在全省污染等级最严重、持续时间最长.西路冷空气影响期间,各站颗粒物质量浓度转为快速上升,东部地区在偏西风持续49~58 h后空气质量改善为良,中西部地区无法得到有效改善;东路冷空气影响7~22 h后,中西部地区空气质量转为良,高压底部持续偏东风使全省颗粒物得到彻底清除,连续污染天气结束.研究显示,西路弱冷空气的输送会加剧江苏省的污染程度,持续较长时间的东路冷空气则可以改善江苏省的空气质量.   相似文献   
487.
为了解天津市PM2.5-O3复合污染特征及气象成因,基于2013~2019年高时间分辨率的PM2.5、 O3和气象观测数据,对天津市PM2.5-O3复合污染特征、污染物浓度分布以及关键气象因子进行分析.结果表明,2013~2019年,天津市复合污染日94 d,总体呈现下降趋势,前期(2013~2015年)下降明显,由2013年的23 d降至2015年的11 d,下降52.2%;后期(2016~2019年)波动式上升,由2016年的12 d升至2019年的14 d,上升16.7%.复合污染日主要出现在每年的3~9月,年际变化较大,2013~2016年在6~8月出现较多,2017~2019年在4月和9月出现较多.小时ρ(PM2.5)在75~85μg·m-3时,小时ρ(O3)存在峰值区(301~326μg·m-3).在所有O3污染中,PM2.5...  相似文献   
488.
钱悦  许彬  夏玲君  陈燕玲  邓力琛  王欢  张根 《环境科学》2021,42(5):2190-2201
利用2016~2019年生态环境部环境监测总站提供的江西省11个设区市的监测数据及同期的国家气象观测站常规观测资料,研究江西省臭氧污染特征与气象因子的关系.结果表明,江西省近几年臭氧污染日益严重,2016年全省臭氧(日最大8 h滑动平均值)平均浓度为80.1 μg·m-3,到2019年上升至98.2 μg·m-3,平均年增长率为6 μg·m-3.2019年江西省11个设区市O3超标总天数为475 d,占总超标天数的72.6%.2016~2018年O3月平均浓度具有典型的季节变化特征:夏季 > 春季 > 秋季 > 冬季,2019年秋季由于降水量显著减少、日照时数增多和气温升高等气象条件导致秋季近地面臭氧浓度异常升高,其平均浓度高于其它季节.臭氧浓度总体与气温、日照时数呈正相关,与相对湿度呈负相关,当气温高于30℃、相对湿度在20%~40%区间、风速在2~3 m·s-1区间时易出现高浓度臭氧污染.江西省臭氧浓度呈现一定的空间分布特征:赣东北地区低于其他地区,南部城市高于北部城市.其中,赣州市臭氧污染较为严重,其2019年平均浓度居全省最高,为104.2 μg·m-3.基于后向轨迹HYSPLIT模型和潜在源解析PSCF对赣州市进行分析,研究结果表明赣州市臭氧污染的主要潜在贡献源区存在一定的季节差异:春季臭氧污染的外来输送源主要来自广东中部和江西北部地区,夏季主要来自江西北部地区,而秋季则主要来自广东北部和安徽中部地区.  相似文献   
489.
北京大气中常规污染物的垂直分布特征   总被引:7,自引:1,他引:7  
近地层大气中的污染物的垂直变化对地面空气质量有直接影响.2004年9月22日─10月30日,以北京325 m气象塔为观测平台,分别在气象塔的8,47,120和280 m处,对大气中的O3,CO,NO,SO2和NOx 5种污染物及温度、湿度、风向和风速4项气象要素进行同步连续观测.5种污染物在各层日变化均明显,其中8,47和120 m 3层的变化一致,但280 m处的φ(O3)高于其下3层,夜间尤其明显.当φ(NO2)/φ(NO)小于25时,φ(O3)与该比值表现出很强的相关性,8,47,120和280 m处的相关系数分别为0.86,0.72,0.58和0.57.主成分分析中,280 m处各主成分组成与其下3层完全不同,进一步表明该处的污染物与低层污染物分布规律不同,该处的污染物除受局地湍流扩散影响外,还显著受到区域水平输送作用的影响.   相似文献   
490.
We test two hypotheses that are derived from the anthropogenic theory of climate change. The first postulates that a growing population and increasing economic activity increase anthropogenic emissions of radiatively active gases relative to natural sources and sinks, and this alters global biogeochemical cycles in a way that increases the persistence of radiative forcing and temperature. The second postulates that the increase in the persistence of radiative forcing transmits a stochastic trend to the time series for temperature. Results indicate that the persistence of radiative forcing and temperature changes from I(0) to I(1) during the last 500 years and that the I(1) fingerprint in radiative forcing can be detected in a statistically measureable fashion in surface temperature. As such, our results are consistent with the physical mechanisms that underlie the theory of anthropogenic climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号