首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   19篇
综合类   3篇
基础理论   65篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   7篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   5篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   9篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有68条查询结果,搜索用时 234 毫秒
61.
Our goal was to determine whether it is more cost‐effective to control feral cat abundance with trap‐neuter‐release programs or trap and euthanize programs. Using STELLA 7, systems modeling software, we modeled changes over 30 years in abundance of cats in a feral colony in response to each management method and the costs and benefits associated with each method . We included costs associated with providing food, veterinary care, and microchips to the colony cats and the cost of euthanasia, wages, and trapping equipment in the model. Due to a lack of data on predation rates and disease transmission by feral cats the only benefits incorporated into the analyses were reduced predation on Wedge‐tailed Shearwaters (Puffinus pacificus). When no additional domestic cats were abandoned by owners and the trap and euthanize program removed 30,000 cats in the first year, the colony was extirpated in at least 75% of model simulations within the second year. It took 30 years for trap‐neuter‐release to extirpate the colony. When the cat population was supplemented with 10% of the initial population size per year, the colony returned to carrying capacity within 6 years and the trap and euthanize program had to be repeated, whereas trap‐neuter‐release never reduced the number of cats to near zero within the 30‐year time frame of the model. The abandonment of domestic cats reduced the cost effectiveness of both trap‐neuter‐release and trap and euthanize. Trap‐neuter‐release was approximately twice as expensive to implement as a trap and euthanize program. Results of sensitivity analyses suggested trap‐neuter‐release programs that employ volunteers are still less cost‐effective than trap and euthanize programs that employ paid professionals and that trap‐neuter‐release was only effective when the total number of colony cats in an area was below 1000. Reducing the rate of abandonment of domestic cats appears to be a more effective solution for reducing the abundance of feral cats. Costos y Beneficios de Captura‐Esterilización‐Liberación y Eutanasia para la Remoción de Gatos Urbanos en Oahu, Hawaii  相似文献   
62.
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage‐based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts’ 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data‐collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk‐averse decisions than to expect precise forecasts from models. Habilidad de los Modelos Matriciales para Explicar el Pasado y Predecir el Futuro de las Poblaciones de Plantas  相似文献   
63.
Climate change is expected to increase the frequency and severity of drought and wildfire. Aquatic and moisture‐sensitive species, such as amphibians, may be particularly vulnerable to these modified disturbance regimes because large wildfires often occur during extended droughts and thus may compound environmental threats. However, understanding of the effects of wildfires on amphibians in forests with long fire‐return intervals is limited. Numerous stand‐replacing wildfires have occurred since 1988 in Glacier National Park (Montana, U.S.A.), where we have conducted long‐term monitoring of amphibians. We measured responses of 3 amphibian species to fires of different sizes, severity, and age in a small geographic area with uniform management. We used data from wetlands associated with 6 wildfires that burned between 1988 and 2003 to evaluate whether burn extent and severity and interactions between wildfire and wetland isolation affected the distribution of breeding populations. We measured responses with models that accounted for imperfect detection to estimate occupancy during prefire (0–4 years) and different postfire recovery periods. For the long‐toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), occupancy was not affected for 6 years after wildfire. But 7–21 years after wildfire, occupancy for both species decreased ≥25% in areas where >50% of the forest within 500 m of wetlands burned. In contrast, occupancy of the boreal toad (Anaxyrus boreas) tripled in the 3 years after low‐elevation forests burned. This increase in occupancy was followed by a gradual decline. Our results show that accounting for magnitude of change and time lags is critical to understanding population dynamics of amphibians after large disturbances. Our results also inform understanding of the potential threat of increases in wildfire frequency or severity to amphibians in the region. Incrementos Rápidos y Declinaciones Desfasadas en la Ocupación de Anfibios Después de un Incendio  相似文献   
64.
Abstract: Different deforestation agents, such as small farmers and large agricultural businesses, create different spatial patterns of deforestation. We analyzed the proportion of deforestation associated with different‐sized clearings in the Brazilian Amazon from 2002 through 2009. We used annual deforestation maps to determine total area deforested and the size distribution of deforested patches per year. The size distribution of deforested areas changed over time in a consistent, directional manner. Large clearings (>1000 ha) comprised progressively smaller amounts of total annual deforestation. The number of smaller clearings (6.25–50.00 ha) remained unchanged over time. Small clearings accounted for 73% of all deforestation in 2009, up from 30% in 2002, whereas the proportion of deforestation attributable to large clearings decreased from 13% to 3% between 2002 and 2009. Large clearings were concentrated in Mato Grosso, but also occurred in eastern Pará and in Rondônia. In 2002 large clearings accounted for 17%, 15%, and 10% of all deforestation in Mato Grosso, Pará, and Rondônia, respectively. Even in these states, where there is a highly developed agricultural business dominated by soybean production and cattle ranching, the proportional contribution of large clearings to total deforestation declined. By 2009 large clearings accounted for 2.5%, 3.5%, and 1% of all deforestation in Mato Grosso, Pará, and Rondônia, respectively. These changes in deforestation patch size are coincident with the implementation of new conservation policies by the Brazilian government, which suggests that these policies are not effectively reducing the number of small clearings in primary forest, whether these are caused by large landholders or smallholders, but have been more effective at reducing the frequency of larger clearings.  相似文献   
65.
Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species‐centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator–prey interactions. Using simulation‐based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional‐response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short‐term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives. Definición de Metas de Recuperación Realistas para Dos Especies en Peligro Interactuantes, Enhydra lutris y Haliotis kamtschatkana  相似文献   
66.
With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene flow (AGF), may provide genetic variation necessary for populations to adapt to climate change. We ran genetic simulations to mimic different AGF scenarios in large populations and measured their outcomes on population-level fitness to determine circumstances in which it is worthwhile to perform AGF. In the absence of inbreeding depression, AGF was beneficial within a few generations only when introduced genotypes had much higher fitness than local individuals and traits affecting fitness were controlled by a few genes of large effect. AGF was harmful over short periods (e.g., first ∼10–20 generations) if there was strong outbreeding depression or introduced deleterious genetic variation. When the adaptive trait was controlled by many loci of small effect, the benefits of AGF took over 10 generations to realize—potentially too long for most climate-related management scenarios. The genomic integrity of the recipient population typically remained intact following AGF; the amount of genetic material from the donor population usually constituted no more of the recipient population's genome than the fraction of the population introduced. Significant genomic turnover (e.g., >50% replacement) only occurred when the selective advantage of the adaptive trait and translocation fraction were extremely high. Our results will be useful when adaptive management is used to maintain the genetic health and productivity of large populations under climate change.  相似文献   
67.
Genetic mechanisms determining habitat selection and specialization of individuals within species have been hypothesized, but not tested at the appropriate individual level in nature. In this work, we analyzed habitat selection for 139 GPS-collared caribou belonging to 3 declining ecotypes sampled throughout Northwestern Canada. We used Resource Selection Functions comparing resources at used and available locations. We found that the 3 caribou ecotypes differed in their use of habitat suggesting specialization. On expected grounds, we also found differences in habitat selection between summer and winter, but also, originally, among the individuals within an ecotype. We next obtained Single Nucleotide Polymorphisms (SNPs) for the same caribou individuals, we detected those associated to habitat selection, and then identified genes linked to these SNPs. These genes had functions related in other organisms to habitat and dietary specializations, and climatic adaptations. We therefore suggest that individual variation in habitat selection was based on genotypic variation in the SNPs of individual caribou, indicating that genetic forces underlie habitat and diet selection in the species. We also suggest that the associations between habitat and genes that we detected may lead to lack of resilience in the species, thus contributing to caribou endangerment. Our work emphasizes that similar mechanisms may exist for other specialized, endangered species.  相似文献   
68.
Restoration programs in the form of ex-situ breeding combined with reintroductions are becoming critical to counteract demographic declines and species losses. Such programs are increasingly using genetic management to improve conservation outcomes. However, the lack of long-term monitoring of genetic indicators following reintroduction prevents assessments of the trajectory and persistence of reintroduced populations. We carried out an extensive monitoring program in the wild for a threatened small-bodied fish (southern pygmy perch, Nannoperca australis) to assess the long-term genomic effects of its captive breeding and reintroduction. The species was rescued prior to its extirpation from the terminal lakes of Australia's Murray-Darling Basin, and then used for genetically informed captive breeding and reintroductions. Subsequent annual or biannual monitoring of abundance, fitness, and occupancy over a period of 11 years, combined with postreintroduction genetic sampling, revealed survival and recruitment of reintroduced fish. Genomic analyses based on data from the original wild rescued, captive born, and reintroduced cohorts revealed low inbreeding and strong maintenance of neutral and candidate adaptive genomic diversity across multiple generations. An increasing trend in the effective population size of the reintroduced population was consistent with field monitoring data in demonstrating successful re-establishment of the species. This provides a rare empirical example that the adaptive potential of a locally extinct population can be maintained during genetically informed ex-situ conservation breeding and reintroduction into the wild. Strategies to improve biodiversity restoration via ex-situ conservation should include genetic-based captive breeding and longitudinal monitoring of standing genomic variation in reintroduced populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号