全文获取类型
收费全文 | 1278篇 |
免费 | 437篇 |
国内免费 | 2篇 |
专业分类
安全科学 | 4篇 |
环保管理 | 5篇 |
综合类 | 31篇 |
基础理论 | 1644篇 |
污染及防治 | 15篇 |
评价与监测 | 4篇 |
社会与环境 | 11篇 |
灾害及防治 | 3篇 |
出版年
2024年 | 85篇 |
2023年 | 90篇 |
2022年 | 84篇 |
2021年 | 114篇 |
2020年 | 116篇 |
2019年 | 107篇 |
2018年 | 89篇 |
2017年 | 119篇 |
2016年 | 107篇 |
2015年 | 130篇 |
2014年 | 138篇 |
2013年 | 119篇 |
2012年 | 87篇 |
2011年 | 95篇 |
2010年 | 117篇 |
2009年 | 25篇 |
2008年 | 48篇 |
2007年 | 3篇 |
2006年 | 6篇 |
2005年 | 4篇 |
2004年 | 3篇 |
2003年 | 5篇 |
2002年 | 6篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 2篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1975年 | 1篇 |
排序方式: 共有1717条查询结果,搜索用时 15 毫秒
91.
Despite several decades of research on the effects of fragmentation and habitat change on biodiversity, there remain strong biases in the geographical regions and taxonomic species studied. The knowledge gaps resulting from these biases are of particular concern if the forests most threatened with modification are also those for which the effects of such change are most poorly understood. To quantify the nature and magnitude of such biases, we conducted a systematic review of the published literature on forest fragmentation in the tropics for the period 1980–2012. Studies included focused on any type of response of single species, communities, or assemblages of any taxonomic group to tropical forest fragmentation and on fragmentation‐related changes to forests. Of the 853 studies we found in the SCOPUS database, 64% were conducted in the Neotropics, 13% in Asia, 10% in the Afrotropics, and 5% in Australasia. Thus, although the Afrotropics is subject to the highest rates of deforestation globally, it was the most disproportionately poorly studied biome. Significant taxonomic biases were identified. Of the taxonomic groups considered, herpetofauna was the least studied in the tropics, particularly in Africa. Research examining patterns of species distribution was by far the most common type (72%), and work focused on ecological processes (28%) was rare in all biomes, but particularly in the Afrotropics and for fauna. We suggest research efforts be directed toward less‐studied biogeographic regions, particularly where the threat of forest fragmentation continues to be high. Increased research investment in the Afrotropics will be important to build knowledge of threats and inform responses in a region where almost no efforts to restore its fragmented landscapes have yet begun and forest protection is arguably most tenuous. Sesgos Biogeográficos y Taxonómicos en la Investigación de la Fragmentación de Bosques Tropicales 相似文献
92.
CHERYL S. BREHME JEFF A. TRACEY LEROY R. MCCLENAGHAN ROBERT N. FISHER 《Conservation biology》2013,27(4):710-720
A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife‐vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low‐use dirt, low‐use secondary paved, and rural 2‐lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange‐throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low‐use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2‐lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2‐lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low‐use roads, but roads with heavy traffic may deter movement of a much wider range of small animal species. 相似文献
93.
Johan Svensson Jon Andersson Per Sandström Grzegorz Mikusiński Bengt Gunnar Jonsson 《Conservation biology》2019,33(1):152-163
Loss of natural forests by forest clearcutting has been identified as a critical conservation challenge worldwide. This study addressed forest fragmentation and loss in the context of the establishment of a functional green infrastructure as a spatiotemporally connected landscape-scale network of habitats enhancing biodiversity, favorable conservation status, and ecosystem services. Through retrospective analysis of satellite images, we assessed a 50- to 60-year spatiotemporal clearcutting impact trajectory on natural and near-natural boreal forests across a sizable and representative region from the Gulf of Bothnia to the Scandinavian Mountain Range in northern Fennoscandia. This period broadly covers the whole forest clearcutting period; thus, our approach and results can be applied to comprehensive impact assessment of industrial forest management. The entire study region covers close to 46,000 km2 of forest-dominated landscape in a late phase of transition from a natural or near-natural to a land-use modified state. We found a substantial loss of intact forest, in particular of large, contiguous areas, a spatial polarization of remaining forest on regional scale where the inland has been more severely affected than the mountain and coastal zones, and a pronounced impact on interior forest core areas. Salient results were a decrease in area of the largest intact forest patch from 225,853 to 68,714 ha in the mountain zone and from 257,715 to 38,668 ha in the foothills zone, a decrease from 75% to 38% intact forest in the inland zones, a decrease in largest patch core area (assessed by considering 100-m patch edge disturbance) from 6114 to 351 ha in the coastal zone, and a geographic imbalance in protected forest with an evident predominance in the mountain zone. These results demonstrate profound disturbance of configuration of the natural forest landscape and disrupted connectivity, which challenges the establishment of functional green infrastructure. Our approach supports the identification of forests for expanded protection and conservation-oriented forest landscape restoration. 相似文献
94.
Tanvi Vaidyanathan;Sarah J. Foster;B. Ramkumar;Amanda C. J. Vincent; 《Conservation biology》2024,38(5):e14337
Reconciling conservation goals with sustainable resource use requires adaptive management strategies. The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) regulates global trade for species listed on Appendix II, partly by requiring member countries (parties) to ensure exports do not damage wild populations (called making positive “nondetriment findings” [NDFs]). Unfortunately, when parties find NDFs difficult, they often suspend legal trade, imposing economic costs and driving trade underground. To make it easier for parties to examine the detrimental nature of exports, we devised a spatial approach and applied it to seahorses (Hippocampus spp.) in Tamil Nadu, India, as an example. Our approach involves mapping answers to 5 key questions on species distribution (QA), pressures (QB), management measures (QC), management implementation (QD), and species’ population status (QE). We gathered data from fisher interviews and published literature. Seahorse abundance was greatest in southern Palk Bay and the northern Gulf of Mannar, primarily in seagrasses and coral reefs (QA). Fishing pressure was highest in Palk Bay, primarily from bottom trawlers and dragnetters operating in shallow seahorse habitats near the coastline (QB). Management measures including a marine protected area (MPA), bottom trawl exclusion zone, and closed season were theoretically in place (QC), but their implementation was poor (QD). Fishers reported seahorse catches in 85% of the area covered by the MPA and the exclusion zone; bottom trawlers were responsible for most violations. Seahorses were also captured in Sri Lankan waters, where bottom trawling is banned. Fisher reports indicated declining seahorse catches and reduced body sizes (QE), highlighting unsustainable exploitation. Our results highlight the need for better implementation of existing management measures before a positive NDF can be made and suggest mitigation beyond bans. Such pragmatic spatial analyses can help regulate exports at sustainable levels, supporting CITES implementation for its vast range of species. 相似文献
95.
Rosaleen Duffy Freya A. V. St John Bram Büscher Dan Brockington 《Conservation biology》2016,30(1):14-22
Conservation organizations have increasingly raised concerns about escalating rates of illegal hunting and trade in wildlife. Previous studies have concluded that people hunt illegally because they are financially poor or lack alternative livelihood strategies. However, there has been little attempt to develop a richer understanding of the motivations behind contemporary illegal wildlife hunting. As a first step, we reviewed the academic and policy literatures on poaching and illegal wildlife use and considered the meanings of poverty and the relative importance of structure and individual agency. We placed motivations for illegal wildlife hunting within the context of the complex history of how wildlife laws were initially designed and enforced to indicate how hunting practices by specific communities were criminalized. We also considered the nature of poverty and the reasons for economic deprivation in particular communities to indicate how particular understandings of poverty as material deprivation ultimately shape approaches to illegal wildlife hunting. We found there is a need for a much better understanding of what poverty is and what motivates people to hunt illegally. 相似文献
96.
Rodrigo Oyanedel;Erendira Aceves-Bueno;Lucia Davids;Miguel Ángel Cisneros-Mata; 《Conservation biology》2024,38(5):e14356
The illegal trade in totoaba (Totoaba macdonaldi) is causing adverse social, ecological, and economic impacts. This illegal activity is accelerating the overexploitation of totoaba and pushing the critically endangered vaquita (Phocoena sinus) closer to extinction. Despite extensive efforts to recover vaquita populations, scant attention has been given to the totoaba trade as an independent issue. As a result, data on the totoaba trade are limited, which hampers robust analyses and development of effective interventions to reduce illegal harvesting. We used a previously developed framework specifically designed to examine dynamics of illegal markets and guide measures to mitigate illegal use of totoaba. This framework separates markets into 3 analytical levels: characterization of participating actors (e.g., fishers, intermediaries); examination of how actors interact within the market (e.g., organization of supply chains); and assessment of the overall market dynamics that result from these interactions (e.g., factors determining price and quantity). We reviewed existing literature (108 initial articles) and interviewed key market actors, academics, and nongovernmental organization experts (14) to obtain data for this framework. Our findings offer an overview of the totoaba illegal market operation, highlighting intervention points (e.g., customs agents) and areas where additional information is required to decrease information gaps (e.g., US local market). We describe the structure and complexity of this market, emphasizing the influential role of organized crime in shaping its dynamics (e.g., controlling prices paid to fishers and stockpiling). By providing a systematic and in-depth understanding of the market operation, we aimed to establish a benchmark for effective interventions and future research aimed at reducing uncertainties. Our results provide a crucial step toward addressing this critical issue and can help facilitate development of effective strategies to combat the illegal totoaba trade and promote biodiversity conservation more broadly. 相似文献
97.
Establishing IUCN Red List Criteria for Threatened Ecosystems 总被引:1,自引:0,他引:1
JON PAUL RODRÍGUEZ KATHRYN M. RODRÍGUEZ‐CLARK JONATHAN E. M. BAILLIE NEVILLE ASH JOHN BENSON TIMOTHY BOUCHER CLAIRE BROWN NEIL D. BURGESS BEN COLLEN MICHAEL JENNINGS DAVID A. KEITH EMILY NICHOLSON CARMEN REVENGA BELINDA REYERS TAMMY SMITH MARK SPALDING ANDREW TABER MATT WALPOLE IRENE ZAGER TARA ZAMIN 《Conservation biology》2011,25(1):21-29
Abstract: The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Nature's (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystem's extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012. 相似文献
98.
Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low‐elevation wetlands or mid‐elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy—herbaceous alpine ecotones—were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. Patrones Espaciales del Éxito Reproductivo de Osos Pardos, Derivados de Modelos Jerárquicos Multi‐Estado 相似文献
99.
A. M. Guerrero M. Barnes Ö. Bodin I. Chadès K. J. Davis M. S. Iftekhar C. Morgans K. A. Wilson 《Conservation biology》2020,34(3):733-742
Attempts to better understand the social context in which conservation and environmental decisions are made has led to increased interest in human social networks. To improve the use of social-network analysis in conservation, we reviewed recent studies in the literature in which such methods were applied. In our review, we looked for problems in research design and analysis that limit the utility of network analysis. Nineteen of 55 articles published from January 2016 to June 2019 exhibited at least 1 of the following problems: application of analytical methods inadequate or sensitive to incomplete network data; application of statistical approaches that ignore dependency in the network; or lack of connection between the theoretical base, research question, and choice of analytical techniques. By drawing attention to these specific areas of concern and highlighting research frontiers and challenges, including causality, network dynamics, and new approaches, we responded to calls for increasing the rigorous application of social science in conservation. 相似文献
100.
Maria Lumbierres Prabhat Raj Dahal Moreno Di Marco Stuart H. M. Butchart Paul F. Donald Carlo Rondinini 《Conservation biology》2022,36(3):e13851
Area of habitat (AOH) is defined as the “habitat available to a species, that is, habitat within its range” and is calculated by subtracting areas of unsuitable land cover and elevation from the range. The International Union for the Conservation of Nature (IUCN) Habitats Classification Scheme provides information on species habitat associations, and typically unvalidated expert opinion is used to match habitat to land-cover classes, which generates a source of uncertainty in AOH maps. We developed a data-driven method to translate IUCN habitat classes to land cover based on point locality data for 6986 species of terrestrial mammals, birds, amphibians, and reptiles. We extracted the land-cover class at each point locality and matched it to the IUCN habitat class or classes assigned to each species occurring there. Then, we modeled each land-cover class as a function of IUCN habitat with (SSG, using) logistic regression models. The resulting odds ratios were used to assess the strength of the association between each habitat and land-cover class. We then compared the performance of our data-driven model with those from a published translation table based on expert knowledge. We calculated the association between habitat classes and land-cover classes as a continuous variable, but to map AOH as binary presence or absence, it was necessary to apply a threshold of association. This threshold can be chosen by the user according to the required balance between omission and commission errors. Some habitats (e.g., forest and desert) were assigned to land-cover classes with more confidence than others (e.g., wetlands and artificial). The data-driven translation model and expert knowledge performed equally well, but the model provided greater standardization, objectivity, and repeatability. Furthermore, our approach allowed greater flexibility in the use of the results and uncertainty to be quantified. Our model can be modified for regional examinations and different taxonomic groups. 相似文献