排序方式: 共有84条查询结果,搜索用时 0 毫秒
51.
The complex relationship between personal sense of connection to animals and self‐reported proenvironmental behaviors by zoo visitors
下载免费PDF全文

Alejandro Grajal Jerry F. Luebke Lisa‐Anne DeGregoria Kelly Jennifer Matiasek Susan Clayton Bryan T. Karazsia Carol D. Saunders Susan R. Goldman Michael E. Mann Ricardo Stanoss 《Conservation biology》2017,31(2):322-330
The global biodiversity crisis requires an engaged citizenry that provides collective support for public policies and recognizes the consequences of personal consumption decisions. Understanding the factors that affect personal engagement in proenvironmental behaviors is essential for the development of actionable conservation solutions. Zoos and aquariums may be some of the only places where many people can explore their relations with wild animals and proenvironmental behaviors. Using a moderated‐mediation analysis of a survey of U.S. zoo and aquarium visitors (n = 3588), we explored the relationship between the sense of connection to animals and self‐reported engagement in proenvironmental behaviors related to climate change and how this relationship is affected by certainty that climate change is happening, level of concern about climate change, and perceptions of effectiveness in personally addressing climate change. We found a significant, directional relationship between sense of connection to animals and self‐reported proenvironmental behaviors. Political inclination within the conservative to liberal spectrum did not affect the relationship. We conclude that a personal sense of connection to animals may provide a foundation for educational and communication strategies to enhance involvement in proenvironmental actions. 相似文献
52.
Sifan Hu;Zhijian Liang;Dan Liang;Yang Liu;Jia Zhong;Qian Wei;Tien Ming Lee; 《Conservation biology》2024,38(5):e14351
Unsustainable wildlife consumption and illegal wildlife trade (IWT) threaten biodiversity worldwide. Although publicly accessible data sets are increasingly used to generate insights into IWT, little is known about their potential bias. We compared three typical and temporally corresponding data sets (4204 court verdicts, 926 seizure news reports, and 219 bird market surveys) on traded birds native to China and evaluated their possible species biases. Specifically, we evaluated bias and completeness of sampling for species richness, phylogeny, conservation status, spatial distribution, and life-history characteristics among the three data sets when determining patterns of illegal trade. Court verdicts contained the largest species richness. In bird market surveys and seizure news reports, phylogenetic clustering was greater than that in court verdicts, where songbird species (i.e., Passeriformes) were detected in higher proportions in market surveys. The seizure news data set contained the highest proportion of species of high conservation priority but the lowest species coverage. Across the country, all data sets consistently reported relatively high species richness in south and southwest regions, but markets revealed a northern geographic bias. The species composition in court verdicts and markets also exhibited distinct geographical patterns. There was significant ecological trait bias when we modeled whether a bird species is traded in the market. Our regression model suggested that species with small body masses, large geographical ranges, and a preference for anthropogenic habitats and those that are not nationally protected were more likely to be traded illegally. The species biases we found emphasize the need to know the constraints of each data set so that they can optimally inform strategies to combat IWT. 相似文献
53.
Releasing animals in more than one location may increase or decrease the probability of success of a reintroduction project, yet the question of how many release sites to use has received little attention. We used empirical data from the reintroduction program of the Persian fallow deer (Dama mesopotamica) (Galilee region in northern Israel) in an individual-based spatially explicit simulation model to assess the effects of releasing deer from multiple sites. We examined whether multiple release sites increase reintroduction success, and if so, whether the optimal number of sites for a given scenario can be determined and whether the outcome differs if animals are released alternately (i.e., the location of the release alternates yearly between sites) or consecutively (i.e., one release site is used for several years, then another is used, and so forth). We selected 8 potential release sites in addition to the original site and simulated the release of 180 individuals at a rate of 10 individuals per year in different combinations of the original site and 1-4 additional sites. In our model, releasing animals into the wild at multiple sites produced higher population growth and greater spatial expansion than releasing animals at only one site and a consecutive-release approach was superior to an alternate-release approach. We suggest that through the use of simulation modeling that is based on empirical data from previous releases, managers can make better-informed decisions regarding the use of multiple release sites and greatly improve the probability of reintroduction success. 相似文献
54.
In negotiations over land‐right acquisitions, landowners have an informational advantage over conservation groups because they know more about the opportunity costs of conservation measures on their sites. This advantage creates the possibility that landowners will demand payments greater than the required minimum, where this minimum required payment is known as the landowner's willingness to accept (WTA). However, in recent studies of conservation costs, researchers have assumed landowners will accept conservation with minimum payments. We investigated the ability of landowners to demand payments above their WTA when a conservation group has identified multiple sites for protection. First, we estimated the maximum payment landowners could potentially demand, which is set when groups of landowners act as a cooperative. Next, through the simulation of conservation auctions, we explored the amount of money above landowners’ WTA (i.e., surplus) that conservation groups could cede to secure conservation agreements, again investigating the influence of landowner cooperatives. The simulations showed the informational advantage landowners held could make conservation investments up to 42% more expensive than suggested by the site WTAs. Moreover, all auctions resulted in landowners obtaining payments greater than their WTA; thus, it may be unrealistic to assume landowners will accept conservation contracts with minimum payments. Of particular significance for species conservation, conservation objectives focused on overall species richness, which therefore recognize site complementarity, create an incentive for landowners to form cooperatives to capture surplus. To the contrary, objectives in which sites are substitutes, such as the maximization of species occurrences, create a disincentive for cooperative formation. La Habilidad de Propietarios y Sus Cooperativas para Implementar Pagos Mayores que los Costos de Oportunidad en Contratos de Conservación 相似文献
55.
JULIANO SARMENTO CABRAL WILLIAM J. BOND GUY F. MIDGLEY ANTHONY G. REBELO WILFRIED THUILLER FRANK M. SCHURR 《Conservation biology》2011,25(1):73-84
Abstract: Wildflower harvesting is an economically important activity of which the ecological effects are poorly understood. We assessed how harvesting of flowers affects shrub persistence and abundance at multiple spatial extents. To this end, we built a process‐based model to examine the mean persistence and abundance of wild shrubs whose flowers are subject to harvest (serotinous Proteaceae in the South African Cape Floristic Region). First, we conducted a general sensitivity analysis of how harvesting affects persistence and abundance at nested spatial extents. For most spatial extents and combinations of demographic parameters, persistence and abundance of flowering shrubs decreased abruptly once harvesting rate exceeded a certain threshold. At larger extents, metapopulations supported higher harvesting rates before their persistence and abundance decreased, but persistence and abundance also decreased more abruptly due to harvesting than at smaller extents. This threshold rate of harvest varied with species’ dispersal ability, maximum reproductive rate, adult mortality, probability of extirpation or local extinction, strength of Allee effects, and carrying capacity. Moreover, spatial extent interacted with Allee effects and probability of extirpation because both these demographic properties affected the response of local populations to harvesting more strongly than they affected the response of metapopulations. Subsequently, we simulated the effects of harvesting on three Cape Floristic Region Proteaceae species and found that these species reacted differently to harvesting, but their persistence and abundance decreased at low rates of harvest. Our estimates of harvesting rates at maximum sustainable yield differed from those of previous investigations, perhaps because researchers used different estimates of demographic parameters, models of population dynamics, and spatial extent than we did. Good demographic knowledge and careful identification of the spatial extent of interest increases confidence in assessments and monitoring of the effects of harvesting. Our general sensitivity analysis improved understanding of harvesting effects on metapopulation dynamics and allowed qualitative assessment of the probability of extirpation of poorly studied species. 相似文献
56.
Julie Louvrier Anja Molinari-Jobin Marc Kéry Thierry Chambert David Miller Fridolin Zimmermann Eric Marboutin Paolo Molinari Oliver Müeller Rok Černe Olivier Gimenez 《Conservation biology》2019,33(1):185-195
As large carnivores recover throughout Europe, their distribution needs to be studied to determine their conservation status and assess the potential for human-carnivore conflicts. However, efficient monitoring of many large carnivore species is challenging due to their rarity, elusive behavior, and large home ranges. Their monitoring can include opportunistic sightings from citizens in addition to designed surveys. Two types of detection errors may occur in such monitoring schemes: false negatives and false positives. False-negative detections can be accounted for in species distribution models (SDMs) that deal with imperfect detection. False-positive detections, due to species misidentification, have rarely been accounted for in SDMs. Generally, researchers use ad hoc data-filtering methods to discard ambiguous observations prior to analysis. These practices may discard valuable ecological information on the distribution of a species. We investigated the costs and benefits of including data types that may include false positives rather than discarding them for SDMs of large carnivores. We used a dynamic occupancy model that simultaneously accounts for false negatives and positives to jointly analyze data that included both unambiguous detections and ambiguous detections. We used simulations to compare the performances of our model with a model fitted on unambiguous data only. We tested the 2 models in 4 scenarios in which parameters that control false-positive detections and true detections varied. We applied our model to data from the monitoring of the Eurasian lynx (Lynx lynx) in the European Alps. The addition of ambiguous detections increased the precision of parameter estimates. For the Eurasian lynx, incorporating ambiguous detections produced more precise estimates of the ecological parameters and revealed additional occupied sites in areas where the species is likely expanding. Overall, we found that ambiguous data should be considered when studying the distribution of large carnivores through the use of dynamic occupancy models that account for misidentification. 相似文献
57.
Estimates of temporal trends in species’ occupancy are essential for conservation policy and planning, but limitations to the data and models often result in very high trend uncertainty. A critical source of uncertainty that degrades scientific credibility is that caused by disagreement among studies or models. Modelers are aware of this uncertainty but usually only partially estimate it and communicate it to decision makers. At the same time, there is growing awareness that full disclosure of uncertainty is critical for effective translation of science into policies and plans. But what are the most effective approaches to estimating uncertainty and communicating uncertainty to decision makers? We explored how alternative approaches to estimating and communicating uncertainty of species trends could affect decisions concerning conservation status of freshwater fishes. We used ensemble models to propagate trend uncertainty within and among models and communicated this uncertainty with categorical distributions of trend direction and magnitude. All approaches were designed to fit an established decision-making system used to assign species conservation status by the New Zealand government. Our results showed how approaches that failed to fully disclose uncertainty, while simplifying the information presented, could hamper species conservation or lead to ineffective decisions. We recommend an approach that was recently used effectively to communicate trend uncertainty to a panel responsible for setting the conservation status of New Zealand's freshwater fishes. 相似文献
58.
Nicole Barbour George L. Shillinger Eliezer Gurarie Aimee L. Hoover Philippe Gaspar Julien Temple-Boyer Tony Candela William F. Fagan Helen Bailey 《Conservation biology》2023,37(5):e14114
Conservation of migratory species exhibiting wide-ranging and multidimensional behaviors is challenged by management efforts that only utilize horizontal movements or produce static spatial–temporal products. For the deep-diving, critically endangered eastern Pacific leatherback turtle, tools that predict where turtles have high risks of fisheries interactions are urgently needed to prevent further population decline. We incorporated horizontal–vertical movement model results with spatial–temporal kernel density estimates and threat data (gear-specific fishing) to develop monthly maps of spatial risk. Specifically, we applied multistate hidden Markov models to a biotelemetry data set (n = 28 leatherback tracks, 2004–2007). Tracks with dive information were used to characterize turtle behavior as belonging to 1 of 3 states (transiting, residential with mixed diving, and residential with deep diving). Recent fishing effort data from Global Fishing Watch were integrated with predicted behaviors and monthly space-use estimates to create maps of relative risk of turtle–fisheries interactions. Drifting (pelagic) longline fishing gear had the highest average monthly fishing effort in the study region, and risk indices showed this gear to also have the greatest potential for high-risk interactions with turtles in a residential, deep-diving behavioral state. Monthly relative risk surfaces for all gears and behaviors were added to South Pacific TurtleWatch (SPTW) ( https://www.upwell.org/sptw ), a dynamic management tool for this leatherback population. These modifications will refine SPTW's capability to provide important predictions of potential high-risk bycatch areas for turtles undertaking specific behaviors. Our results demonstrate how multidimensional movement data, spatial–temporal density estimates, and threat data can be used to create a unique conservation tool. These methods serve as a framework for incorporating behavior into similar tools for other aquatic, aerial, and terrestrial taxa with multidimensional movement behaviors. 相似文献
59.
Abstract: In recent decades, various conservation organizations have developed models to prioritize locations for conservation. Through a survey of the spending patterns of 281 conservation nongovernmental organizations (NGOs), we examined the relation between 2 such models and spatial patterns of spending by conservation NGOs in 44 countries in sub‐Saharan Africa. We tested whether, at the country level, the proportion of a country designated as a conservation priority was correlated with where NGOs spent money. For one model (the combination of Conservation International's hotspots and High Biodiversity Wilderness Areas, which are areas of high endemism with high or low levels of vegetation loss respectively), there was no relation between the proportion of a country designated as a priority and levels of NGO spending, including by the NGO associated with the model. In the second model (Global 200), the proportion of a country designated as a priority and the amount of money spent by NGOs were significantly and positively related. Less money was spent in countries in northern and western sub‐Saharan Africa than countries in southern and eastern Africa, relative to the proportion of the country designated as a conservation priority. We suggest that on the basis of our results some NGOs consider increasing their spending on the areas designated as of conservation priority which are currently relatively underfunded, although there are economic, political, cultural, historical, biological, and practical reasons why current spending patterns may not align with priority sites. 相似文献
60.
Pablo V. Prieto Jacob J. Bukoski Felipe S. M. Barros Hawthorne L. Beyer Alvaro Iribarrem Pedro H. S. Brancalion Robin L. Chazdon David B. Lindenmayer Bernardo B. N. Strassburg Manuel R. Guariguata Renato Crouzeilles 《Conservation biology》2022,36(3):e13842
Natural forest regrowth is a cost-effective, nature-based solution for biodiversity recovery, yet different socioenvironmental factors can lead to variable outcomes. A critical knowledge gap in forest restoration planning is how to predict where natural forest regrowth is likely to lead to high levels of biodiversity recovery, which is an indicator of conservation value and the potential provisioning of diverse ecosystem services. We sought to predict and map landscape-scale recovery of species richness and total abundance of vertebrates, invertebrates, and plants in tropical and subtropical second-growth forests to inform spatial restoration planning. First, we conducted a global meta-analysis to quantify the extent to which recovery of species richness and total abundance in second-growth forests deviated from biodiversity values in reference old-growth forests in the same landscape. Second, we employed a machine-learning algorithm and a comprehensive set of socioenvironmental factors to spatially predict landscape-scale deviation and map it. Models explained on average 34% of observed variance in recovery (range 9–51%). Landscape-scale biodiversity recovery in second-growth forests was spatially predicted based on socioenvironmental landscape factors (human demography, land use and cover, anthropogenic and natural disturbance, ecosystem productivity, and topography and soil chemistry); was significantly higher for species richness than for total abundance for vertebrates (median range-adjusted predicted deviation 0.09 vs. 0.34) and invertebrates (0.2 vs. 0.35) but not for plants (which showed a similar recovery for both metrics [0.24 vs. 0.25]); and was positively correlated for total abundance of plant and vertebrate species (Pearson r = 0.45, p = 0.001). Our approach can help identify tropical and subtropical forest landscapes with high potential for biodiversity recovery through natural forest regrowth. 相似文献