首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   99篇
  国内免费   1篇
环保管理   2篇
综合类   3篇
基础理论   331篇
评价与监测   2篇
  2023年   18篇
  2022年   20篇
  2021年   37篇
  2020年   23篇
  2019年   15篇
  2018年   19篇
  2017年   24篇
  2016年   29篇
  2015年   27篇
  2014年   17篇
  2013年   21篇
  2012年   18篇
  2011年   24篇
  2010年   26篇
  2009年   6篇
  2008年   9篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1985年   1篇
排序方式: 共有338条查询结果,搜索用时 20 毫秒
151.
Mortality of animals on roads is a critical threat to many wildlife populations and is poised to increase strongly because of ongoing and planned road construction. If these new roads cannot be avoided, effective mitigation measures will be necessary to stop biodiversity decline. Fencing along roads effectively reduces roadkill and is often used in combination with wildlife passages. Because fencing the entire road is not always possible due to financial constraints, high-frequency roadkill areas are often identified to inform the placement of fencing. We devised an adaptive fence-implementation plan to prioritize road sections for fencing. In this framework, areas along roads of high, moderate, and low levels of animal mortality (respectively, roadkill hotspots, warmspots, and coldspots) are identified at multiple scales (i.e., in circles of different diameters [200–2000 m] in which mortality frequency is measured). Fence deployment is based on the relationship between the amount of fencing being added to the road, starting with the strongest roadkill hotspots, and potential reduction in road mortality (displayed in mortality-reduction graphs). We applied our approach to empirical and simulated spatial patterns of wildlife–vehicle collisions. The scale used for analysis affected the number and spatial extent of roadkill hot-, warm-, and coldspots. At fine scales (e.g., 200 m), more hotspots were identified than at coarse scales (e.g., 2000 m), but combined the fine-scale hotspots covered less road and less fencing was needed to reduce road mortality. However, many short fences may be less effective in practice due to a fence-end effect (i.e., animals moving around the fence more easily), resulting in a trade-off between few long and many short fences, which we call the FLOMS (few-long-or-many-short) fences trade-off. Thresholds in the mortality-reduction graphs occurred for some roadkill patterns, but not for others. Thresholds may be useful to consider when determining road-mitigation targets. The existence of thresholds at multiple scales and the FLOMS trade-off have important implications for biodiversity conservation.  相似文献   
152.
Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9‐year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well‐defined resource‐access rights; community respect for a flexible system of customary governance; long‐term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district‐wide coordination, which provided a broader spatial context for adaptive‐management decision making. Co‐Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi  相似文献   
153.
Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate‐related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and “distinct population segments” may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case‐by‐case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species’ continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA‐listed species’ survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long‐term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro  相似文献   
154.
Despite a common understanding of the harmful impacts of Western conservation models that separate people from nature, widespread progress toward incorporating socioeconomic, political, cultural, and spiritual considerations in conservation practice is lacking. For some, the concept of nature-based solutions (NbS) is seen as an interdisciplinary and holistic pathway to better integrate human well-being in conservation. We examined how conservation practitioners in the United States view NbS and how social considerations are or are not incorporated in conservation adaptation projects. We interviewed 28 individuals working on 15 different such projects associated with the Wildlife Conservation Society's Climate Adaptation Fund. We completed 2 rounds of iterative coding in NVivo 12.6.1 to identify in the full text of all interview responses an a priori set of themes related to our research questions and emergent themes. Many respondents saw this moment as a tipping point for the field (one in which the perceived values of social considerations are increasing in conservation practice) (76%) and that social justice concerns and the need to overcome racist and colonial roots of Western conservation have risen to the forefront. Respondents also tentatively agreed that NbS in conservation could support social and ecological outcomes for conservation, but that it was far from guaranteed. Despite individual intention and awareness among practitioners to incorporate social considerations in conservation practice, structural barriers, including limited funding and inflexible grant structures, continue to constrain systemic change. Ultimately, systemic changes that address power and justice in policy and practice are required to leverage this moment to more fully address social considerations in conservation.  相似文献   
155.
Abstract: River‐dwelling fish, such as European graylings (Thymallus thymallus), are susceptible to changes in climate because they can often not avoid suboptimal temperatures, especially during early developmental stages. We analyzed data collected in a 62‐year‐long (1948–2009) population monitoring program. Male and female graylings were sampled about three times/week during the yearly spawning season in order to follow the development of the population. The occurrence of females bearing ripe eggs was used to approximate the timing of each spawning season. In the last years of the study, spawning season was more than 3 weeks earlier than in the first years. This shift was linked to increasing water temperatures as recorded over the last 39 years with a temperature logger at the spawning site. In early spring water temperatures rose more slowly than in later spring. Thus, embryos and larvae were exposed to increasingly colder water at a stage that is critical for sex determination and pathogen resistance in other salmonids. In summer, however, fry were exposed to increasingly warmer temperatures. The changes in water temperatures that we found embryos, larvae, and fry were exposed to could be contributing to the decline in abundance that has occurred over the last 30–40 years.  相似文献   
156.
Abstract: Some species have insufficient defenses against climate change, emerging infectious diseases, and non‐native species because they have not been exposed to these factors over their evolutionary history, and this can decrease their likelihood of persistence. Captive breeding programs are sometimes used to reintroduce individuals back into the wild; however, successful captive breeding and reintroduction can be difficult because species or populations often cannot coexist with non‐native pathogens and herbivores without artificial selection. In captive breeding programs, breeders can select for host defenses that prevent or reduce pathogen or herbivore burden (i.e., resistance) or traits that limit the effects of parasitism or herbivory on host fitness (i.e., tolerance). We propose that selection for host tolerance may enhance the success of reintroduction or translocation because tolerant hosts generally have neutral effects on introduced pathogens and herbivores. The release of resistant hosts would have detrimental effects on their natural enemies, promoting rapid evolution to circumvent the host resistance that may reduce the long‐term probability of persistence of the reintroduced or translocated species. We examined 2 case studies, one on the pathogenic amphibian chytrid fungus ( Batrachochytrium dendrobatidis [Bd]) and the other on the herbivorous cactus moth ( Cactoblastis cactorum) in the United States, where it is not native. In each case study, we provide recommendations for how captive breeders and managers could go about selecting for host tolerance. Selecting for tolerance may offer a promising tool to rescue hosts species from invasive natural enemies as well as new natural enemies associated with climate change‐induced range shifts.  相似文献   
157.
Indian Himalayan basins are earmarked for widespread dam building, but aggregate effects of these dams on terrestrial ecosystems are unknown. We mapped distribution of 292 dams (under construction and proposed) and projected effects of these dams on terrestrial ecosystems under different scenarios of land‐cover loss. We analyzed land‐cover data of the Himalayan valleys, where dams are located. We estimated dam density on fifth‐ through seventh‐order rivers and compared these estimates with current global figures. We used a species–area relation model (SAR) to predict short‐ and long‐term species extinctions driven by deforestation. We used scatter plots and correlation studies to analyze distribution patterns of species and dams and to reveal potential overlap between species‐rich areas and dam sites. We investigated effects of disturbance on community structure of undisturbed forests. Nearly 90% of Indian Himalayan valleys would be affected by dam building and 27% of these dams would affect dense forests. Our model projected that 54,117 ha of forests would be submerged and 114,361 ha would be damaged by dam‐related activities. A dam density of 0.3247/1000 km2 would be nearly 62 times greater than current average global figures; the average of 1 dam for every 32 km of river channel would be 1.5 times higher than figures reported for U.S. rivers. Our results show that most dams would be located in species‐rich areas of the Himalaya. The SAR model projected that by 2025, deforestation due to dam building would likely result in extinction of 22 angiosperm and 7 vertebrate taxa. Disturbance due to dam building would likely reduce tree species richness by 35%, tree density by 42%, and tree basal cover by 30% in dense forests. These results, combined with relatively weak national environmental impact assessment and implementation, point toward significant loss of species if all proposed dams in the Indian Himalaya are constructed. Efectos Potenciales del Desarrollo Hidroeléctrico Actual y Propuesto sobre la Diversidad Biológica Terrestre en el Himalaya Hindú  相似文献   
158.
In the developing world, the exploitation of threatened species jeopardizes their permanence in the wild. Because not all captures are intentional, for instance when capture methods have low selectivity, pressure on these species may be lessened by releasing living incidentally caught animals. However, it is often unrealistic to expect people to voluntarily do so because it means foregoing the benefits of resource extraction. Financial incentives for such animal release may foster conservation objectives. Reducing human–animal conflicts, protecting natural habitat, and conserving nests of threatened species are examples of conservation benefits that can be built on financial reward systems. However, incentives aiming to protect unintentionally captured threatened species are scarce. We considered pay for release, a type of ecosystem-service payment designed to foster the release of incidentally captured threatened species. We aimed to determine the best conditions to implement this scheme, its potential benefits (e.g., incentivizing the release of threatened species), and pitfalls and priority research needs (e.g., required conditions for pay for release to work) to show that its global applicability is possible. Given that approaches solely based on education and law enforcement may be ineffective under some circumstances, we argue that pay for release can protect incidentally captured endangered species if used under conditions conducive for its success. When local participants’ intrinsic motivation for conservation is weak, but the release of incidentally live-caught animals into their habitats is readily achievable, pay-for-release schemes could jump start urgently needed conservation efforts against indiscriminate animal harvesting.  相似文献   
159.
Abstract: Many ecosystems exist primarily, or solely, on privately owned (freehold) or managed (leasehold) land. In rural and semirural areas, local and regional government agencies are commonly responsible for encouraging landholders to conserve native vegetation and species on these private properties. Yet these agencies often lack the capacity to design and implement conservation programs tailored to rural and semirural landholdings and instead offer one program to all landholders. Landholders may elect not to participate because the program is irrelevant to their property or personal needs; consequently, vegetation–retention objectives may not be achieved. We differentiated landholders in Queensland, Australia, according to whether they derived income from the land (production landholders) or not (nonproduction landholders). We compared these two groups to identify similarities and differences that may inform the use of policy instruments (e.g., voluntary, economic, and regulatory) in conservation program design. We interviewed 45 landholders participating in three different conservation agreement programs (price‐based rate [property tax] rebate; market‐based tender; and voluntary, permanent covenant). Production landholders were more likely to participate in short‐term programs that offered large financial incentives that applied to <25% of their property. Nonproduction landholders were more likely to participate in long‐term programs that were voluntary or offered small financial incentives that applied to >75% of their property. These results may be explained by significant differences in the personal circumstances of production and nonproduction landholders (income, education, health) and differences in their norms (beliefs about how an individual is expected to act) and attitudes. Knowledge of these differences may allow for development of conservation programs that better meet the needs of landholders and thus increase participation in conservation programs and retention of native vegetation.  相似文献   
160.
Abstract: Most evaluations of the effects of human activities on wild animals have focused on estimating changes in abundance and distribution of threatened species; however, ecosystem disturbances also affect aspects of animal behavior such as short‐term movement, activity budgets, and reproduction. It may take a long time for changes in behavior to manifest as changes in abundance or distribution. Therefore, it is important to have methods with which to detect short‐term behavioral responses to human activity. We used continuous acoustic and seismic monitoring to evaluate the short‐term effects of seismic prospecting for oil on forest elephants (Loxodonta cyclotis) in Gabon, Central Africa. We monitored changes in elephant abundance and activity as a function of the frequency and intensity of acoustic and seismic signals from dynamite detonation and human activity. Elephants did not flee the area being explored; the relative number of elephants increased in a seasonal pattern typical of elsewhere in the ecosystem. In the exploration area, however, they became more nocturnal. Neither the intensity nor the frequency of dynamite blasts affected the frequency of calling or the daily pattern of elephant activity. Nevertheless, the shift of activity to nocturnal hours became more pronounced as human activity neared each monitored area of forest. This change in activity pattern and its likely causes would not have been detected through standard monitoring methods, which are not sensitive to behavioral changes over short time scales (e.g., dung transects, point counts) or cover a limited area (e.g., camera traps). Simultaneous acoustic monitoring of animal communication, human, and environmental sounds allows the documentation of short‐term behavioral changes in response to human disturbance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号