排序方式: 共有382条查询结果,搜索用时 15 毫秒
21.
Understanding human perspectives is critical in a range of conservation contexts, for example, in overcoming conflicts or developing projects that are acceptable to relevant stakeholders. The Q methodology is a unique semiquantitative technique used to explore human perspectives. It has been applied for decades in other disciplines and recently gained traction in conservation. This paper helps researchers assess when Q is useful for a given conservation question and what its use involves. To do so, we explained the steps necessary to conduct a Q study, from the research design to the interpretation of results. We provided recommendations to minimize biases in conducting a Q study, which can affect mostly when designing the study and collecting the data. We conducted a structured literature review of 52 studies to examine in what empirical conservation contexts Q has been used. Most studies were subnational or national cases, but some also address multinational or global questions. We found that Q has been applied to 4 broad types of conservation goals: addressing conflict, devising management alternatives, understanding policy acceptability, and critically reflecting on the values that implicitly influence research and practice. Through these applications, researchers found hidden views, understood opinions in depth and discovered points of consensus that facilitated unlocking difficult disagreements. The Q methodology has a clear procedure but is also flexible, allowing researchers explore long‐term views, or views about items other than statements, such as landscape images. We also found some inconsistencies in applying and, mainly, in reporting Q studies, whereby it was not possible to fully understand how the research was conducted or why some atypical research decisions had been taken in some studies. Accordingly, we suggest a reporting checklist. 相似文献
22.
Abstract: Anthropogenic disturbances such as fragmentation are rapidly altering biodiversity, yet a lack of attention to species traits and abundance patterns has made the results of most studies difficult to generalize. We determined traits of extinction‐prone species and present a novel strategy for classifying species according to their population‐level response to a gradient of disturbance intensity. We examined the effects of forest fragmentation on dung beetle communities in an archipelago of 33 islands recently created by flooding in Venezuela. Species richness, density, and biomass all declined sharply with decreasing island area and increasing island isolation. Species richness was highly nested, indicating that local extinctions occurred nonrandomly. The most sensitive dung beetle species appeared to require at least 85 ha of forest, more than many large vertebrates. Extinction‐prone species were either large‐bodied, forest specialists, or uncommon. These explanatory variables were unrelated, suggesting at least 3 underlying causes of extirpation. Large species showed high wing loading (body mass/wing area) and a distinct flight strategy that may increase their area requirements. Although forest specificity made most species sensitive to fragmentation, a few persistent habitat generalists dispersed across the matrix. Density functions classified species into 4 response groups on the basis of their change in density with decreasing species richness. Sensitive and persistent species both declined with increasing fragmentation intensity, but persistent species occurred on more islands, which may be due to their higher baseline densities. Compensatory species increased in abundance following the initial loss of sensitive species, but rapidly declined with increasing fragmentation. Supertramp species (widespread habitat generalists) may be poor competitors but strong dispersers; their abundance peaked following the decline of the other 3 groups. Nevertheless, even the least sensitive species were extirpated or rare on the smallest and most isolated islands. 相似文献
23.
ZOE JEWELL 《Conservation biology》2013,27(3):501-508
Monitoring free‐ranging animals in their natural habitat is a keystone of ecosystem conservation and increasingly important in the context of current rates of loss of biological diversity. Data collected from individuals of endangered species inform conservation policies. Conservation professionals assume that these data are reliable—that the animals from whom data are collected are representative of the species in their physiology, ecology, and behavior and of the populations from which they are drawn. In the last few decades, there has been an enthusiastic adoption of invasive techniques for gathering ecological and conservation data. Although these can provide impressive quantities of data, and apparent insights into animal ranges and distributions, there is increasing evidence that these techniques can result in animal welfare problems, through the wide‐ranging physiological effects of acute and chronic stress and through direct or indirect injuries or compromised movement. Much less commonly, however, do conservation scientists consider the issue of how these effects may alter the behavior of individuals to the extent that the data they collect could be unreliable. The emerging literature on the immediate and longer‐term effects of capture and handling indicate it can no longer be assumed that a wild animal's survival of the process implies the safety of the procedure, that the procedure is ethical, or the scientific validity of the resulting data. I argue that conservation professionals should routinely assess study populations for negative effects of their monitoring techniques and adopt noninvasive approaches for best outcomes not only for the animals, but also for conservation science. Efecto de la Técnica de Monitoreo en la Calidad de la Ciencia de la Conservación 相似文献
24.
Monitoring,imperfect detection,and risk optimization of a Tasmanian devil insurance population
下载免费PDF全文

Tracy M. Rout Christopher M. Baker Stewart Huxtable Brendan A. Wintle 《Conservation biology》2018,32(2):267-275
Most species are imperfectly detected during biological surveys, which creates uncertainty around their abundance or presence at a given location. Decision makers managing threatened or pest species are regularly faced with this uncertainty. Wildlife diseases can drive species to extinction; thus, managing species with disease is an important part of conservation. Devil facial tumor disease (DFTD) is one such disease that led to the listing of the Tasmanian devil (Sarcophilus harrisii) as endangered. Managers aim to maintain devils in the wild by establishing disease‐free insurance populations at isolated sites. Often a resident DFTD‐affected population must first be removed. In a successful collaboration between decision scientists and wildlife managers, we used an accessible population model to inform monitoring decisions and facilitate the establishment of an insurance population of devils on Forestier Peninsula. We used a Bayesian catch‐effort model to estimate population size of a diseased population from removal and camera trap data. We also analyzed the costs and benefits of declaring the area disease‐free prior to reintroduction and establishment of a healthy insurance population. After the monitoring session in May–June 2015, the probability that all devils had been successfully removed was close to 1, even when we accounted for a possible introduction of a devil to the site. Given this high probability and the baseline cost of declaring population absence prematurely, we found it was not cost‐effective to carry out any additional monitoring before introducing the insurance population. Considering these results within the broader context of Tasmanian devil management, managers ultimately decided to implement an additional monitoring session before the introduction. This was a conservative decision that accounted for uncertainty in model estimates and for the broader nonmonetary costs of mistakenly declaring the area disease‐free. 相似文献
25.
JOHAN A. OLDEKOP ANTHONY J. BEBBINGTON DAN BROCKINGTON RICHARD F. PREZIOSI 《Conservation biology》2010,24(2):461-469
Abstract: The lack of concrete instances in which conservation and development have been successfully merged has strengthened arguments for strict exclusionist conservation policies. Research has focused more on social cooperation and conflict of different management regimes and less on how these factors actually affect the natural environments they seek to conserve. Consequently, it is still unknown which strategies yield better conservation outcomes? We conducted a meta‐analysis of 116 published case studies on common resource management regimes from Africa, south and central America, and southern and Southeast Asia. Using ranked sociodemographic, political, and ecological data, we analyzed the effect of land tenure, population size, social heterogeneity, as well as internally devised resource‐management rules and regulations (institutions) on conservation outcome. Although land tenure, population size, and social heterogeneity did not significantly affect conservation outcome, institutions were positively associated with better conservation outcomes. There was also a significant interaction effect between population size and institutions, which implies complex relationships between population size and conservation outcome. Our results suggest that communities managing a common resource can play a significant role in conservation and that institutions lead to management regimes with lower environmental impacts. 相似文献
26.
Although it is recognized that marine wild-capture fisheries are an important source of food for much of the world, the cost of sustainable capture fisheries to species diversity is uncertain, and it is often questioned whether industrial fisheries can be managed sustainably. We evaluated the trade-off among sustainable food production, profitability, and conservation objectives in the groundfish bottom-trawl fishery off the U.S. West Coast, where depletion (i.e., reduction in abundance) of six rockfish species (Sebastes) is of particular concern. Trade-offs are inherent in this multispecies fishery because there is limited capacity to target species individually. From population models and catch of 34 stocks of bottom fish, we calculated the relation between harvest rate, long-term yield (i.e., total weight of fish caught), profit, and depletion of each species. In our models, annual ecosystem-wide yield from all 34 stocks was maximized with an overall 5.4% harvest rate, but profit was maximized at a 2.8% harvest rate. When we reduced harvest rates to the level (2.2% harvest rate) at which no stocks collapsed (<10% of unfished levels), biomass harvested was 76% of the maximum sustainable yield and profit 89% of maximum. A harvest rate under which no stocks fell below the biomass that produced maximum sustainable yield (1% harvest rate), resulted in 45% of potential yield and 67% of potential profit. Major reductions in catch in the late 1990s led to increase in the biomass of the most depleted stocks, but this rebuilding resulted in the loss of >30% of total sustainable yield, whereas yield lost from stock depletion was 3% of total sustainable yield. There are clear conservation benefits to lower harvest rates, but avoiding overfishing of all stocks in a multispecies fishery carries a substantial cost in terms of lost yield and profit. 相似文献
27.
Fuwen Wei Ronald Swaisgood Yibo Hu Yonggang Nie Li Yan Zejun Zhang Dunwu Qi Lifeng Zhu 《Conservation biology》2015,29(6):1497-1507
Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological science for the giant panda, examining how these advancements have contributed to panda conservation. Pandas’ morphological and behavioral adaptations to a diet of bamboo, which bear strong influence on movement ecology, have been well studied, providing knowledge to guide management actions ranging from reserve design to climate change mitigation. Foraging ecology has also provided essential information used in the creation of landscape models of panda habitat. Because habitat loss and fragmentation are major drivers of the panda population decline, efforts have been made to help identify core habitat areas, establish where habitat corridors are needed, and prioritize areas for protection and restoration. Thus, habitat models have provided guidance for the Chinese governments’ creation of 67 protected areas. Behavioral research has revealed a complex and efficient communication system and documented the need for protection of habitat that serves as a communication platform for bringing the sexes together for mating. Further research shows that den sites in old‐growth forests may be a limiting resource, indicating potential value in providing alternative den sites for rearing offspring. Advancements in molecular ecology have been revolutionary and have been applied to population census, determining population structure and genetic diversity, evaluating connectivity following habitat fragmentation, and understanding dispersal patterns. These advancements form a foundation for increasing the application of adaptive management approaches to move panda conservation forward more rapidly. Although the Chinese government has made great progress in setting aside protected areas, future emphasis will be improved management of pandas and their habitat. 相似文献
28.
An interdisciplinary review of current and future approaches to improving human–predator relations
下载免费PDF全文

S. Pooley M. Barua W. Beinart A. Dickman G. Holmes J. Lorimer A.J. Loveridge D.W. Macdonald G. Marvin S. Redpath C. Sillero‐Zubiri A. Zimmermann E.J. Milner‐Gulland 《Conservation biology》2017,31(3):513-523
In a world of shrinking habitats and increasing competition for natural resources, potentially dangerous predators bring the challenges of coexisting with wildlife sharply into focus. Through interdisciplinary collaboration among authors trained in the humanities, social sciences, and natural sciences, we reviewed current approaches to mitigating adverse human–predator encounters and devised a vision for future approaches to understanding and mitigating such encounters. Limitations to current approaches to mitigation include too much focus on negative impacts; oversimplified equating of levels of damage with levels of conflict; and unsuccessful technical fixes resulting from failure to engage locals, address hidden costs, or understand cultural (nonscientific) explanations of the causality of attacks. An emerging interdisciplinary literature suggests that to better frame and successfully mitigate negative human–predator relations conservation professionals need to consider dispensing with conflict as the dominant framework for thinking about human–predator encounters; work out what conflicts are really about (they may be human–human conflicts); unravel the historical contexts of particular conflicts; and explore different cultural ways of thinking about animals. The idea of cosmopolitan natures may help conservation professionals think more clearly about human–predator relations in both local and global context. These new perspectives for future research practice include a recommendation for focused interdisciplinary research and the use of new approaches, including human‐animal geography, multispecies ethnography, and approaches from the environmental humanities notably environmental history. Managers should think carefully about how they engage with local cultural beliefs about wildlife, work with all parties to agree on what constitutes good evidence, develop processes and methods to mitigate conflicts, and decide how to monitor and evaluate these. Demand for immediate solutions that benefit both conservation and development favors dispute resolution and technical fixes, which obscures important underlying drivers of conflicts. If these drivers are not considered, well‐intentioned efforts focused on human–wildlife conflicts will fail. 相似文献
29.
Poaching can disrupt wildlife‐management efforts in community‐based natural resource management systems. Monitoring, estimating, and acquiring data on poaching is difficult. We used local‐stakeholder knowledge and poaching records to rank and map the risk of poaching incidents in 2 areas where natural resources are managed by community members in Caprivi, Namibia. We mapped local stakeholder perceptions of the risk of poaching, risk of wildlife damage to livelihoods, and wildlife distribution and compared these maps with spatially explicit records of poaching events. Recorded poaching events and stakeholder perceptions of where poaching occurred were not spatially correlated. However, the locations of documented poaching events were spatially correlated with areas that stakeholders perceived wildlife as a threat to their livelihoods. This result suggests poaching occurred in response to wildlife damage occurred. Local stakeholders thought that wildlife populations were at high risk of being poached and that poaching occurred where there was abundant wildlife. These findings suggest stakeholders were concerned about wildlife resources in their community and indicate a need for integrated and continued monitoring of poaching activities and further interventions at the wildlife‐agricultural interface. Involving stakeholders in the assessment of poaching risks promotes their participation in local conservation efforts, a central tenet of community‐based management. We considered stakeholders poaching informants, rather than suspects, and our technique was spatially explicit. Different strategies to reduce poaching are likely needed in different areas. For example, interventions that reduce human‐wildlife conflict may be required in residential areas, and increased and targeted patrolling may be required in more remote areas. Stakeholder‐generated maps of human‐wildlife interactions may be a valuable enforcement and intervention support tool. Riesgos de Cacería Furtiva en el Manejo de Recursos Naturales Basado en Comunidades 相似文献
30.
Abstract: Concerns about pollinator declines have grown in recent years, yet the ability to detect changes in abundance, taxonomic richness, and composition of pollinator communities is hampered severely by the lack of data over space and time. Citizen scientists may be able to extend the spatial and temporal extent of pollinator monitoring programs. We developed a citizen‐science monitoring protocol in which we trained 13 citizen scientists to observe and classify floral visitors at the resolution of orders or super families (e.g., bee, wasp, fly) and at finer resolution within bees (superfamily Apoidea) only. We evaluated the protocol by comparing data collected simultaneously at 17 sites by citizen scientists (observational data set) and by professionals (specimen‐based data set). The sites differed with respect to the presence and age of hedgerows planted to improve habitat quality for pollinators. We found significant, positive correlations among the two data sets for higher level taxonomic composition, honey bee (Apis mellifera) abundance, non‐Apis bee abundance, bee richness, and bee community similarity. Results for both data sets also showed similar trends (or lack thereof) in these metrics among sites differing in the presence and age of hedgerows. Nevertheless, citizen scientists did not observe approximately half of the bee groups collected by professional scientists at the same sites. Thus, the utility of citizen‐science observational data may be restricted to detection of community‐level changes in abundance, richness, or similarity over space and time, and citizen‐science observations may not reliably reflect the abundance or frequency of occurrence of specific pollinator species or groups. 相似文献