首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1382篇
  免费   489篇
  国内免费   7篇
安全科学   5篇
废物处理   8篇
环保管理   15篇
综合类   37篇
基础理论   1771篇
污染及防治   19篇
评价与监测   6篇
社会与环境   14篇
灾害及防治   3篇
  2024年   1篇
  2023年   107篇
  2022年   98篇
  2021年   130篇
  2020年   131篇
  2019年   115篇
  2018年   94篇
  2017年   132篇
  2016年   119篇
  2015年   147篇
  2014年   157篇
  2013年   137篇
  2012年   102篇
  2011年   109篇
  2010年   134篇
  2009年   32篇
  2008年   50篇
  2007年   5篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   8篇
  2002年   11篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
  1983年   1篇
  1982年   2篇
  1975年   1篇
排序方式: 共有1878条查询结果,搜索用时 234 毫秒
311.
Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]). These graphs are often built based on expert opinion or species distribution models (SDMs) and therefore lack empirical validation from data more closely reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect how habitat connectivity influences gene flow, which is one of the main ecoevolutionary processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs’ specialization indices, and an SDM. We used genetic data (712 birds from 27 populations) to compute local genetic indices and pairwise genetic distances. Finally, we assessed the relationships between genetic distances or indices and cost distances or connectivity metrics with maximum-likelihood population-effects distance models and Spearman correlations between metrics. Overall, the landscape graphs reliably reflected the influence of connectivity on population genetic structure; validation R2 was up to 0.30 and correlation coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data requirements, and construction and analysis methods was not straightforward because the graph based on the most complex construction method (species distribution modeling) sometimes had less ecological relevance than the others. Cross-validation methods and sensitivity analyzes allowed us to make the advantages and limitations of each construction method spatially explicit. We confirmed the relevance of landscape graphs for conservation modeling but recommend a case-specific consideration of the cost-effectiveness of their construction methods. We hope the replication of independent validation approaches across species and landscapes will strengthen the ecological relevance of connectivity models.  相似文献   
312.
Species shift their distribution in response to climate and land-cover change, which may result in a spatial mismatch between currently protected areas (PAs) and priority conservation areas (PCAs). We examined the effects of climate and land-cover change on potential range of gibbons and sought to identify PCAs that would conserve them effectively. We collected global gibbon occurrence points and modeled (ecological niche model) their current and potential 2050s ranges under climate-change and different land-cover-change scenarios. We examined change in range and PA coverage between the current and future ranges of each gibbon species. We applied spatial conservation prioritization to identify the top 30% PCAs for each species. We then determined how much of the PCAs are conserved in each country within the global range of gibbons. On average, 31% (SD 22) of each species’ current range was covered in PAs. PA coverage of the current range of 9 species was <30%. Nine species lost on average 46% (SD 29) of their potential range due to climate change. Under climate-change with an optimistic land-cover-change scenario (B1), 12 species lost 39% (SD 28) of their range. In a pessimistic land-cover-change scenario (A2), 15 species lost 36% (SD 28) of their range. Five species lost significantly more range under the A2 scenario than the B1 scenario (p = 0.01, SD 0.01), suggesting that gibbons will benefit from effective management of land cover. PA coverage of future range was <30% for 11 species. On average, 32% (SD 25) of PCAs were covered by PAs. Indonesia contained more species and PCAs and thus has the greatest responsibility for gibbon conservation. Indonesia, India, and Myanmar need to expand their PAs to fulfill their responsibility to gibbon conservation. Our results provide a baseline for global gibbon conservation, particularly for countries lacking gibbon research capacity.  相似文献   
313.
Conservation decisions are invariably made with incomplete data on species’ distributions, habitats, and threats, but frameworks for allocating conservation investments rarely account for missing data. We examined how explicit consideration of missing data can boost return on investment in ecosystem restoration, focusing on the challenge of restoring aquatic ecosystem connectivity by removing dams and road crossings from rivers. A novel way of integrating the presence of unmapped barriers into a barrier optimization model was developed and applied to the U.S. state of Maine to maximize expected habitat gain for migratory fish. Failing to account for unmapped barriers during prioritization led to nearly 50% lower habitat gain than was anticipated using a conventional barrier optimization approach. Explicitly acknowledging that data are incomplete during project selection, however, boosted expected habitat gains by 20–273% on average, depending on the true number of unmapped barriers. Importantly, these gains occurred without additional data. Simply acknowledging that some barriers were unmapped, regardless of their precise number and location, improved conservation outcomes. Given incomplete data on ecosystems worldwide, our results demonstrate the value of accounting for data shortcomings during project selection.  相似文献   
314.
Protected areas (PAs) are a commonly used strategy to confront forest conversion and biodiversity loss. Although determining drivers of forest loss is central to conservation success, understanding of them is limited by conventional modeling assumptions. We used random forest regression to evaluate potential drivers of deforestation in PAs in Mexico, while accounting for nonlinear relationships and higher order interactions underlying deforestation processes. Socioeconomic drivers (e.g., road density, human population density) and underlying biophysical conditions (e.g., precipitation, distance to water, elevation, slope) were stronger predictors of forest loss than PA characteristics, such as age, type, and management effectiveness. Within PA characteristics, variables reflecting collaborative and equitable management and PA size were the strongest predictors of forest loss, albeit with less explanatory power than socioeconomic and biophysical variables. In contrast to previously used methods, which typically have been based on the assumption of linear relationships, we found that the associations between most predictors and forest loss are nonlinear. Our results can inform decisions on the allocation of PA resources by strengthening management in PAs with the highest risk of deforestation and help preemptively protect key biodiversity areas that may be vulnerable to deforestation in the future.  相似文献   
315.
Measuring progress toward international biodiversity targets requires robust information on the conservation status of species, which the International Union for Conservation of Nature (IUCN) Red List of Threatened Species provides. However, data and capacity are lacking for most hyperdiverse groups, such as invertebrates, plants, and fungi, particularly in megadiverse or high-endemism regions. Conservation policies and biodiversity strategies aimed at halting biodiversity loss by 2020 need to be adapted to tackle these information shortfalls after 2020. We devised an 8-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance, and ecology of species; linking taxonomic research more closely with conservation; improving global biodiversity databases by making the submission of spatially explicit data mandatory for scientific publications; developing a global spatial database on threats to biodiversity to facilitate IUCN Red List assessments; automating preassessments by integrating distribution data and spatial threat data; building capacity in taxonomy, ecology, and biodiversity monitoring in countries with high species richness or endemism; creating species monitoring programs for lesser-known taxa; and developing sufficient funding mechanisms to reduce reliance on voluntary efforts. Implementing these strategies in the post-2020 biodiversity framework will help to overcome the lack of capacity and data regarding the conservation status of biodiversity. This will require a collaborative effort among scientists, policy makers, and conservation practitioners.  相似文献   
316.
The establishment of marine protected areas (MPAs) is a critical step in ensuring the continued persistence of marine biodiversity. Although the area protected in MPAs is growing, the movement of individuals (or larvae) among MPAs, termed connectivity, has only recently been included as an objective of many MPAs. As such, assessing connectivity is often neglected or oversimplified in the planning process. For promoting population persistence, it is important to ensure that protected areas in a system are functionally connected through dispersal or adult movement. We devised a multi-species model of larval dispersal for the Australian marine environment to evaluate how much local scale connectivity is protected in MPAs and determine whether the extensive system of MPAs truly functions as a network. We focused on non-migratory species with simplified larval behaviors (i.e., passive larval dispersal) (e.g., no explicit vertical migration) as an illustration. Of all the MPAs analyzed (approximately 2.7 million km2), outside the Great Barrier Reef and Ningaloo Reef, <50% of MPAs (46-80% of total MPA area depending on the species considered) were functionally connected. Our results suggest that Australia's MPA system cannot be referred to as a single network, but rather a collection of numerous smaller networks delineated by natural breaks in the connectivity of reef habitat. Depending on the dispersal capacity of the taxa of interest, there may be between 25 and 47 individual ecological networks distributed across the Australian marine environment. The need to first assess the underlying natural connectivity of a study system prior to implementing new MPAs represents a key research priority for strategically enlarging MPA networks. Our findings highlight the benefits of integrating multi-species connectivity into conservation planning to identify opportunities to better incorporate connectivity into the design of MPA systems and thus to increase their capacity to support long-term, sustainable biodiversity outcomes.  相似文献   
317.
Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site-selection biases influence estimates of biodiversity change is largely unknown. Site-selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site-selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site-selection bias. We used a simple spatially resolved, individual-based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site-selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site-selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site-selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site-selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site-selection bias, we recommend use of systematic site-selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site-selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.  相似文献   
318.
Understanding complex systems is essential to ensure their conservation and effective management. Models commonly support understanding of complex ecological systems and, by extension, their conservation. Modeling, however, is largely a social process constrained by individuals’ mental models (i.e., a small-scale internal model of how a part of the world works based on knowledge, experience, values, beliefs, and assumptions) and system complexity. To account for both system complexity and the diversity of knowledge of complex systems, we devised a novel way to develop a shared qualitative complex system model. We disaggregated a system (carbonate coral reefs) into smaller subsystem modules that each represented a functioning unit, about which an individual is likely to have more comprehensive knowledge. This modular approach allowed us to elicit an individual mental model of a defined subsystem for which the individuals had a higher level of confidence in their knowledge of the relationships between variables. The challenge then was to bring these subsystem models together to form a complete, shared model of the entire system, which we attempted through 4 phases: develop the system framework and subsystem modules; develop the individual mental model elicitation methods; elicit the mental models; and identify and isolate differences for exploration and identify similarities to cocreate a shared qualitative model. The shared qualitative model provides opportunities to develop a quantitative model to understand and predict complex system change.  相似文献   
319.
Most countries have many pieces of legislation that govern biodiversity, including a range of criminal, administrative, and civil law provisions that state how wildlife must be legally used, managed, and protected. However, related debates in conservation, such as about enforcement, often overlook the details within national legislation that define which specific acts are illegal, the conditions under which laws apply, and how they are sanctioned. Based on a review of 90 wildlife laws in 8 high-biodiversity countries with different legal systems, we developed a taxonomy that describes all types of wildlife offenses in those countries. The 511 offenses are organized into a hierarchical taxonomy that scholars and practitioners can use to help conduct legal analyses. This is significant amidst competing calls to strengthen, deregulate, and reform wildlife legislation, particularly in response to fears over zoonotic threats and large-scale biodiversity loss. It can be used to provide more nuance legal analyses and facilitate like-for-like comparisons across countries, informing processes to redraft conservation laws, review deregulation efforts, close loopholes, and harmonize legislation across jurisdictions. We applied the taxonomy in a comparison of sanctions in 8 countries for hunting a protected species. We found not only huge ranges in fines (US$0 to $200,000) and imprisonment terms (1.5 years to life imprisonment), but also fundamentally different approaches to designing sanctions for wildlife offenses. The taxonomy also illustrates how future legal taxonomies can be developed for other environmental issues (e.g., invasive species, protected areas).  相似文献   
320.
Assisted migration (AM) is the translocation of species beyond their historical range to locations that are expected to be more suitable under future climate change. However, a relocated population may fail to establish in its donor community if there is high uncertainty in decision-making, climate, and interactions with the recipient ecological community. To quantify the benefit to persistence and risk of establishment failure of AM under different management scenarios (e.g., choosing target species, proportion of population to relocate, and optimal location to relocate), we built a stochastic metacommunity model to simulate several species reproducing, dispersing, and competing on a temperature gradient as temperature increases over time. Without AM, the species were vulnerable to climate change when they had low population sizes, short dispersal, and strong poleward competition. When relocating species that exemplified these traits, AM increased the long-term persistence of the species most when relocating a fraction of the donor population, even if the remaining population was very small or rapidly declining. This suggests that leaving behind a fraction of the population could be a robust approach, allowing managers to repeat AM in case they move the species to the wrong place and at the wrong time, especially when it is difficult to identify a species’ optimal climate. We found that AM most benefitted species with low dispersal ability and least benefited species with narrow thermal tolerances, for which AM increased extinction risk on average. Although relocation did not affect the persistence of nontarget species in our simple competitive model, researchers will need to consider a more complete set of community interactions to comprehensively understand invasion potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号