首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1173篇
  免费   433篇
  国内免费   4篇
安全科学   2篇
废物处理   8篇
环保管理   13篇
综合类   11篇
基础理论   1563篇
污染及防治   5篇
评价与监测   4篇
社会与环境   3篇
灾害及防治   1篇
  2024年   1篇
  2023年   103篇
  2022年   88篇
  2021年   123篇
  2020年   119篇
  2019年   100篇
  2018年   79篇
  2017年   116篇
  2016年   106篇
  2015年   131篇
  2014年   137篇
  2013年   115篇
  2012年   81篇
  2011年   88篇
  2010年   114篇
  2009年   27篇
  2008年   41篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有1610条查询结果,搜索用时 359 毫秒
261.
Amphibians are severely affected by climate change, particularly in regions where droughts prevail and water availability is scarce. The extirpation of amphibians triggers cascading effects that disrupt the trophic structure of food webs and ecosystems. Dedicated assessments of the spatial adaptive potential of amphibian species under climate change are, therefore, essential to provide guidelines for their effective conservation. I used predictions about the location of suitable climates for 27 amphibian species in the Iberian Peninsula from a baseline period to 2080 to typify shifting species’ ranges. The time at which these range types are expected to be functionally important for the adaptation of a species was used to identify full or partial refugia; areas most likely to be the home of populations moving into new climatically suitable grounds; areas most likely to receive populations after climate adaptive dispersal; and climatically unsuitable areas near suitable areas. I implemented an area prioritization protocol for each species to obtain a cohesive set of areas that would provide maximum adaptability and where management interventions should be prioritized. A connectivity assessment pinpointed where facilitative strategies would be most effective. Each of the 27 species had distinct spatial requirements but, common to all species, a bottleneck effect was predicted by 2050 because source areas for subsequent dispersal were small in extent. Three species emerged as difficult to maintain up to 2080. The Iberian northwest was predicted to capture adaptive range for most species. My study offers analytical guidelines for managers and decision makers to undertake systematic assessments on where and when to intervene to maximize the persistence of amphibian species and the functionality of the ecosystems that depend on them.  相似文献   
262.
Although illegal wildlife trade (IWT) represents a serious threat to biodiversity, research into the prevalence of illegal plant collection and trade remains scarce. Because cacti and succulents are heavily threatened by overcollection for often illegal, international ornamental trade, we surveyed 441 members of the cacti and succulent hobbyist collector community with a mixed quantitative and qualitative approach. We sought to understand collector perspectives on the Convention on the International Trade in Endangered Species of Wild Flora and Fauna (CITES) and on the threats IWT poses to cactus and succulent conservation. Most respondents (74% of 401 respondents) stated that illegal collection in cacti and succulents represents a “very serious problem” and that the problem of wild plant collection is increasing (72% of 319 respondents). Most forms of illegal collection and trade were seen as very unacceptable by respondents. Self-reported noncompliance with CITES rules was uncommon (11.2% of 418 respondents); it remains a persistent problem in parts of the cacti and succulent hobbyist community. People engaging in rule breaking, such as transporting plants without required CITES documents, generally did so knowingly. Although 60.6% of 381 respondents regarded CITES as a very important tool for conservation, sentiment toward CITES and its efficacy in helping species conservation was mixed. Collectors in our survey saw themselves as potentially playing important roles in cactus and succulent conservation, but this potential resource remains largely untapped. Our results suggest the need for enhanced consultation with stakeholders in CITES decision-making. For challenging subjects like IWT, developing evidence-based responses demands deep interdisciplinary engagement, including assessing the conservation impact of species listings on CITES appendices.  相似文献   
263.
Given the speed at which humans are changing the climate, species with high degrees of endemism may not have time to avoid extinction through adaptation. We investigated through teleconnection analysis the origin of rainfall that determines the phylogenetic diversity of rainforest frogs and the effects of microclimate differences in shaping the morphological traits of isolated populations (which contribute to greater phylogenetic diversity and speciation). We also investigated through teleconnection analysis how deforestation in Amazonia can affect ecosystem services that are fundamental to maintaining the climate of the Atlantic rainforest biodiversity hotspot. Seasonal winds known as flying rivers carry water vapor from Amazonia to the Atlantic Forest, and the breaking of this ecosystem service could lead Atlantic Forest species to population decline and extinction in the short term. Our results suggest that the selection of morphological traits that shape Atlantic Forest frog diversity and their population dynamics are influenced by the Amazonian flying rivers. Our results also suggest that the increases of temperature anomalies in the Atlantic Ocean due to global warming and in the Amazon forest due to deforestation are already breaking this cycle and threaten the biodiversity of the Atlantic Forest hotspot.  相似文献   
264.
Conservation practitioners, natural resource managers, and environmental stewards often seek out scientific contributions to inform decision-making. This body of science only becomes actionable when motivated by decision makers considering alternative courses of action. Many in the science community equate addressing stakeholder science needs with delivering actionable science. However, not all efforts to address science needs deliver actionable science, suggesting that the synonymous use of these two constructs (delivering actionable science and addressing science needs) is not trivial. This can be the case when such needs are conveyed by people who neglect decision makers responsible for articulating a priority management concern and for specifying how the anticipated scientific information will aid the decision-making process. We argue that the actors responsible for articulating these science needs and the process used to identify them are decisive factors in the ability to deliver actionable science, stressing the importance of examining the provenance and the determination of science needs. Guided by a desire to enhance communication and cross-literacy between scientists and decision makers, we identified categories of actors who may inappropriately declare science needs (e.g., applied scientists with and without regulatory affiliation, external influencers, reluctant decision makers, agents in place of decision makers, and boundary organization representatives). We also emphasize the importance of, and general approach to, undertaking needs assessments or gap analyses as a means to identify priority science needs. We conclude that basic stipulations to legitimize actionable science, such as the declaration of decisions of interest that motivate science needs and using a robust process to identify priority information gaps, are not always satisfied and require verification. To alleviate these shortcomings, we formulated practical suggestions for consideration by applied scientists, decision makers, research funding entities, and boundary organizations to help foster conditions that lead to science output being truly actionable.  相似文献   
265.
Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]). These graphs are often built based on expert opinion or species distribution models (SDMs) and therefore lack empirical validation from data more closely reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect how habitat connectivity influences gene flow, which is one of the main ecoevolutionary processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs’ specialization indices, and an SDM. We used genetic data (712 birds from 27 populations) to compute local genetic indices and pairwise genetic distances. Finally, we assessed the relationships between genetic distances or indices and cost distances or connectivity metrics with maximum-likelihood population-effects distance models and Spearman correlations between metrics. Overall, the landscape graphs reliably reflected the influence of connectivity on population genetic structure; validation R2 was up to 0.30 and correlation coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data requirements, and construction and analysis methods was not straightforward because the graph based on the most complex construction method (species distribution modeling) sometimes had less ecological relevance than the others. Cross-validation methods and sensitivity analyzes allowed us to make the advantages and limitations of each construction method spatially explicit. We confirmed the relevance of landscape graphs for conservation modeling but recommend a case-specific consideration of the cost-effectiveness of their construction methods. We hope the replication of independent validation approaches across species and landscapes will strengthen the ecological relevance of connectivity models.  相似文献   
266.
Species shift their distribution in response to climate and land-cover change, which may result in a spatial mismatch between currently protected areas (PAs) and priority conservation areas (PCAs). We examined the effects of climate and land-cover change on potential range of gibbons and sought to identify PCAs that would conserve them effectively. We collected global gibbon occurrence points and modeled (ecological niche model) their current and potential 2050s ranges under climate-change and different land-cover-change scenarios. We examined change in range and PA coverage between the current and future ranges of each gibbon species. We applied spatial conservation prioritization to identify the top 30% PCAs for each species. We then determined how much of the PCAs are conserved in each country within the global range of gibbons. On average, 31% (SD 22) of each species’ current range was covered in PAs. PA coverage of the current range of 9 species was <30%. Nine species lost on average 46% (SD 29) of their potential range due to climate change. Under climate-change with an optimistic land-cover-change scenario (B1), 12 species lost 39% (SD 28) of their range. In a pessimistic land-cover-change scenario (A2), 15 species lost 36% (SD 28) of their range. Five species lost significantly more range under the A2 scenario than the B1 scenario (p = 0.01, SD 0.01), suggesting that gibbons will benefit from effective management of land cover. PA coverage of future range was <30% for 11 species. On average, 32% (SD 25) of PCAs were covered by PAs. Indonesia contained more species and PCAs and thus has the greatest responsibility for gibbon conservation. Indonesia, India, and Myanmar need to expand their PAs to fulfill their responsibility to gibbon conservation. Our results provide a baseline for global gibbon conservation, particularly for countries lacking gibbon research capacity.  相似文献   
267.
Conservation decisions are invariably made with incomplete data on species’ distributions, habitats, and threats, but frameworks for allocating conservation investments rarely account for missing data. We examined how explicit consideration of missing data can boost return on investment in ecosystem restoration, focusing on the challenge of restoring aquatic ecosystem connectivity by removing dams and road crossings from rivers. A novel way of integrating the presence of unmapped barriers into a barrier optimization model was developed and applied to the U.S. state of Maine to maximize expected habitat gain for migratory fish. Failing to account for unmapped barriers during prioritization led to nearly 50% lower habitat gain than was anticipated using a conventional barrier optimization approach. Explicitly acknowledging that data are incomplete during project selection, however, boosted expected habitat gains by 20–273% on average, depending on the true number of unmapped barriers. Importantly, these gains occurred without additional data. Simply acknowledging that some barriers were unmapped, regardless of their precise number and location, improved conservation outcomes. Given incomplete data on ecosystems worldwide, our results demonstrate the value of accounting for data shortcomings during project selection.  相似文献   
268.
Protected areas (PAs) are a commonly used strategy to confront forest conversion and biodiversity loss. Although determining drivers of forest loss is central to conservation success, understanding of them is limited by conventional modeling assumptions. We used random forest regression to evaluate potential drivers of deforestation in PAs in Mexico, while accounting for nonlinear relationships and higher order interactions underlying deforestation processes. Socioeconomic drivers (e.g., road density, human population density) and underlying biophysical conditions (e.g., precipitation, distance to water, elevation, slope) were stronger predictors of forest loss than PA characteristics, such as age, type, and management effectiveness. Within PA characteristics, variables reflecting collaborative and equitable management and PA size were the strongest predictors of forest loss, albeit with less explanatory power than socioeconomic and biophysical variables. In contrast to previously used methods, which typically have been based on the assumption of linear relationships, we found that the associations between most predictors and forest loss are nonlinear. Our results can inform decisions on the allocation of PA resources by strengthening management in PAs with the highest risk of deforestation and help preemptively protect key biodiversity areas that may be vulnerable to deforestation in the future.  相似文献   
269.
Measuring progress toward international biodiversity targets requires robust information on the conservation status of species, which the International Union for Conservation of Nature (IUCN) Red List of Threatened Species provides. However, data and capacity are lacking for most hyperdiverse groups, such as invertebrates, plants, and fungi, particularly in megadiverse or high-endemism regions. Conservation policies and biodiversity strategies aimed at halting biodiversity loss by 2020 need to be adapted to tackle these information shortfalls after 2020. We devised an 8-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance, and ecology of species; linking taxonomic research more closely with conservation; improving global biodiversity databases by making the submission of spatially explicit data mandatory for scientific publications; developing a global spatial database on threats to biodiversity to facilitate IUCN Red List assessments; automating preassessments by integrating distribution data and spatial threat data; building capacity in taxonomy, ecology, and biodiversity monitoring in countries with high species richness or endemism; creating species monitoring programs for lesser-known taxa; and developing sufficient funding mechanisms to reduce reliance on voluntary efforts. Implementing these strategies in the post-2020 biodiversity framework will help to overcome the lack of capacity and data regarding the conservation status of biodiversity. This will require a collaborative effort among scientists, policy makers, and conservation practitioners.  相似文献   
270.
The establishment of marine protected areas (MPAs) is a critical step in ensuring the continued persistence of marine biodiversity. Although the area protected in MPAs is growing, the movement of individuals (or larvae) among MPAs, termed connectivity, has only recently been included as an objective of many MPAs. As such, assessing connectivity is often neglected or oversimplified in the planning process. For promoting population persistence, it is important to ensure that protected areas in a system are functionally connected through dispersal or adult movement. We devised a multi-species model of larval dispersal for the Australian marine environment to evaluate how much local scale connectivity is protected in MPAs and determine whether the extensive system of MPAs truly functions as a network. We focused on non-migratory species with simplified larval behaviors (i.e., passive larval dispersal) (e.g., no explicit vertical migration) as an illustration. Of all the MPAs analyzed (approximately 2.7 million km2), outside the Great Barrier Reef and Ningaloo Reef, <50% of MPAs (46-80% of total MPA area depending on the species considered) were functionally connected. Our results suggest that Australia's MPA system cannot be referred to as a single network, but rather a collection of numerous smaller networks delineated by natural breaks in the connectivity of reef habitat. Depending on the dispersal capacity of the taxa of interest, there may be between 25 and 47 individual ecological networks distributed across the Australian marine environment. The need to first assess the underlying natural connectivity of a study system prior to implementing new MPAs represents a key research priority for strategically enlarging MPA networks. Our findings highlight the benefits of integrating multi-species connectivity into conservation planning to identify opportunities to better incorporate connectivity into the design of MPA systems and thus to increase their capacity to support long-term, sustainable biodiversity outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号