首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1173篇
  免费   433篇
  国内免费   4篇
安全科学   2篇
废物处理   8篇
环保管理   13篇
综合类   11篇
基础理论   1563篇
污染及防治   5篇
评价与监测   4篇
社会与环境   3篇
灾害及防治   1篇
  2024年   1篇
  2023年   103篇
  2022年   88篇
  2021年   123篇
  2020年   119篇
  2019年   100篇
  2018年   79篇
  2017年   116篇
  2016年   106篇
  2015年   131篇
  2014年   137篇
  2013年   115篇
  2012年   81篇
  2011年   88篇
  2010年   114篇
  2009年   27篇
  2008年   41篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有1610条查询结果,搜索用时 15 毫秒
271.
Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site-selection biases influence estimates of biodiversity change is largely unknown. Site-selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site-selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site-selection bias. We used a simple spatially resolved, individual-based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site-selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site-selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site-selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site-selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site-selection bias, we recommend use of systematic site-selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site-selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.  相似文献   
272.
Understanding complex systems is essential to ensure their conservation and effective management. Models commonly support understanding of complex ecological systems and, by extension, their conservation. Modeling, however, is largely a social process constrained by individuals’ mental models (i.e., a small-scale internal model of how a part of the world works based on knowledge, experience, values, beliefs, and assumptions) and system complexity. To account for both system complexity and the diversity of knowledge of complex systems, we devised a novel way to develop a shared qualitative complex system model. We disaggregated a system (carbonate coral reefs) into smaller subsystem modules that each represented a functioning unit, about which an individual is likely to have more comprehensive knowledge. This modular approach allowed us to elicit an individual mental model of a defined subsystem for which the individuals had a higher level of confidence in their knowledge of the relationships between variables. The challenge then was to bring these subsystem models together to form a complete, shared model of the entire system, which we attempted through 4 phases: develop the system framework and subsystem modules; develop the individual mental model elicitation methods; elicit the mental models; and identify and isolate differences for exploration and identify similarities to cocreate a shared qualitative model. The shared qualitative model provides opportunities to develop a quantitative model to understand and predict complex system change.  相似文献   
273.
Assisted migration (AM) is the translocation of species beyond their historical range to locations that are expected to be more suitable under future climate change. However, a relocated population may fail to establish in its donor community if there is high uncertainty in decision-making, climate, and interactions with the recipient ecological community. To quantify the benefit to persistence and risk of establishment failure of AM under different management scenarios (e.g., choosing target species, proportion of population to relocate, and optimal location to relocate), we built a stochastic metacommunity model to simulate several species reproducing, dispersing, and competing on a temperature gradient as temperature increases over time. Without AM, the species were vulnerable to climate change when they had low population sizes, short dispersal, and strong poleward competition. When relocating species that exemplified these traits, AM increased the long-term persistence of the species most when relocating a fraction of the donor population, even if the remaining population was very small or rapidly declining. This suggests that leaving behind a fraction of the population could be a robust approach, allowing managers to repeat AM in case they move the species to the wrong place and at the wrong time, especially when it is difficult to identify a species’ optimal climate. We found that AM most benefitted species with low dispersal ability and least benefited species with narrow thermal tolerances, for which AM increased extinction risk on average. Although relocation did not affect the persistence of nontarget species in our simple competitive model, researchers will need to consider a more complete set of community interactions to comprehensively understand invasion potential.  相似文献   
274.
It is widely accepted that the main driver of the observed decline in biological diversity is increasing human pressure on Earth's ecosystems. However, the spatial patterns of change in human pressure and their relation to conservation efforts are less well known. We developed a spatially and temporally explicit map of global change in human pressure over 2 decades between 1990 and 2010 at a resolution of 10 km2. We evaluated 22 spatial data sets representing different components of human pressure and used them to compile a temporal human pressure index (THPI) based on 3 data sets: human population density, land transformation, and electrical power infrastructure. We investigated how the THPI within protected areas was correlated to International Union for Conservation of Nature (IUCN) management categories and the human development index (HDI) and how the THPI was correlated to cumulative pressure on the basis of the original human footprint index. Since the early 1990s, human pressure increased 64% of the terrestrial areas; the largest increases were in Southeast Asia. Protected areas also exhibited overall increases in human pressure, the degree of which varied with location and IUCN management category. Only wilderness areas and natural monuments (management categories Ib and III) exhibited decreases in pressure. Protected areas not assigned any category exhibited the greatest increases. High HDI values correlated with greater reductions in pressure across protected areas, while increasing age of the protected area correlated with increases in pressure. Our analysis is an initial step toward mapping changes in human pressure on the natural world over time. That only 3 data sets could be included in our spatio‐temporal global pressure map highlights the challenge to measuring pressure changes over time. Mapeo del Cambio en la Presión Humana Global en Tierra y Dentro de Áreas Protegidas  相似文献   
275.
The threat posed by large carnivores to livestock and humans makes peaceful coexistence between them difficult. Effective implementation of conservation laws and policies depends on the attitudes of local residents toward the target species. There are many known correlates of human attitudes toward carnivores, but they have only been assessed at the scale of the individual. Because human societies are organized hierarchically, attitudes are presumably influenced by different factors at different scales of social organization, but this scale dependence has not been examined. We used structured interview surveys to quantitatively assess the attitudes of a Buddhist pastoral community toward snow leopards (Panthera uncia) and wolves (Canis lupus). We interviewed 381 individuals from 24 villages within 6 study sites across the high‐elevation Spiti Valley in the Indian Trans‐Himalaya. We gathered information on key explanatory variables that together captured variation in individual and village‐level socioeconomic factors. We used hierarchical linear models to examine how the effect of these factors on human attitudes changed with the scale of analysis from the individual to the community. Factors significant at the individual level were gender, education, and age of the respondent (for wolves and snow leopards), number of income sources in the family (wolves), agricultural production, and large‐bodied livestock holdings (snow leopards). At the community level, the significant factors included the number of smaller‐bodied herded livestock killed by wolves and mean agricultural production (wolves) and village size and large livestock holdings (snow leopards). Our results show that scaling up from the individual to higher levels of social organization can highlight important factors that influence attitudes of people toward wildlife and toward formal conservation efforts in general. Such scale‐specific information can help managers apply conservation measures at appropriate scales. Our results reiterate the need for conflict management programs to be multipronged. Factores Multi‐Escala que Afectan las Actitudes Humanas hacia Leopardos de las Nieves y Lobos  相似文献   
276.
Permeability of Roads to Movement of Scrubland Lizards and Small Mammals   总被引:2,自引:0,他引:2  
A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife‐vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low‐use dirt, low‐use secondary paved, and rural 2‐lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange‐throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low‐use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2‐lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2‐lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low‐use roads, but roads with heavy traffic may deter movement of a much wider range of small animal species.  相似文献   
277.
For species with five or more sightings, quantitative techniques exist to test whether a species is extinct on the basis of distribution of sightings. However, 70% of purportedly extinct mammals are known from fewer than five sightings, and such models do not include some important indicators of the likelihood of extinction such as threats, biological traits, search effort, and demography. Previously, we developed a quantitative method that we based on species' traits in which we used Cox proportional hazards regression to calculate the probability of rediscovery of species regarded as extinct. Here, we used two versions of the Cox regression model to determine the probability of extinction in purportedly extinct mammals and compared the results of these two models with those of stationary Poisson, nonparametric, and Weibull sighting-distribution models. For mammals with five or more sightings, the stationary Poisson model categorized all but two critically endangered (flagged as possibly extinct) species in our data set as extinct, and results with this model were consistent with current categories of the International Union for the Conservation of Nature. The scores of probability of rediscovery for individual species in one version of our Cox regression model were correlated with scores assigned by the stationary Poisson model. Thus, we used this Cox regression model to determine the probability of extinction of mammals with sparse records. On the basis of the Cox regression model, the most likely mammals to be rediscovered were the Montane monkey-faced bat (Pteralopex pulchra), Armenian myotis (Myotis hajastanicus), Alcorn's pocket gopher (Pappogeomys alcorni), and Wimmer's shrew (Crocidura wimmeri). The Cox model categorized two species that have recently disappeared as extinct: the baiji (Lipotes vexillifer) and the Christmas Island pipistrelle (Pipistrellus murrayi). Our new method can be used to test whether species with few records or recent last-sighting dates are likely to be extinct.  相似文献   
278.
Hunted wild animals (i.e., bushmeat) are a main source of protein for many rural populations in the tropics, and the unsustainable harvest of these animals puts both human food security and ecosystem functioning at risk. To understand the correlates of bushmeat consumption, we surveyed 1219 households in 121 rural villages near three newly established national parks in Gabon. Through the surveys we gathered information on bushmeat consumption, income, and material assests. In addition, we quantified land cover in a 5-km radius around the village center and distance of the village center to the nearest park boundary. Bushmeat was not a source of income for most households, but it was the primary animal protein consumed. Ninety-seven percent of households consumed bushmeat at least once during a survey period of 12 days. Income or wealth, land cover, distance of village to the nearest park boundary, and level of education of the head of the household were among the factors that significantly related to the likelihood of consuming any of the 10 most commonly consumed species of bushmeat. Household size was the predictor most strongly associated with quantities of bushmeat consumed and was negatively related to consumption. Total bushmeat consumption per adult male equivalent increased as household wealth increased and decreased as distance of villages to park boundaries increased. Bushmeat consumption at the household level was not related to unit values (i.e., price estimates for a good that typically does not have a market value; estimates derived from willingness to sell or trade the good for items of known price) of bushmeat or the price of chicken and fish as potential substitutes. The median consumption of bushmeat at the village level, however, was negatively related to village mean unit values of bushmeat across all species. Our results suggest that a lack of alternative protein sources motivated even the wealthiest among surveyed households to consume bushmeat. Providing affordable, alternative protein sources to all households would likely reduce unsustainable levels of bushmeat consumption in rural Gabon.  相似文献   
279.
Pathogen-driven declines in animal populations are increasingly regarded as a major conservation issue. The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction by devil facial tumor disease, a unique transmissible cancer. The disease is transmitted through direct transfer of tumor cells, which is possible because the genetic diversity of Tasmanian devils is low, particularly in the major histocompatibility complex genes of the immune system. The far northwest of Tasmania now holds the last remaining disease-free wild devil populations. The recent discovery of unique major histocompatibility complex genotypes in the northwestern region of Tasmania has raised the possibility that some animals may be resilient to the disease. We examined the differences in the epidemiology and population effects of devil facial tumor disease at 3 well-studied affected sites in eastern Tasmania and 1 in western Tasmania (West Pencil Pine). In contrast to the 3 eastern sites, there has been no rapid increase in disease prevalence or evidence of population decline at West Pencil Pine. Moreover, this is the only onsite at which the population age structure has remained unaltered 4 years after the first detection of disease. The most plausible explanations for the substantial differences in population effects and epidemiology of the disease between eastern and western sites are geographic differences in genotypes or phenotypes of devils and functional differences between tumor strains in the 2 regions. We suggest that conservation efforts focus on identifying whether either or both these explanations are correct and then, if resistance alleles exist, to attempt to spread the resistant alleles into affected populations. Such assisted selection has rarely been attempted for the management of wildlife diseases, but it may be widely applicable.  相似文献   
280.
Some conservation initiatives provoke intense conflict among stakeholders. The need for action, the nature of the conservation measures, and the effects of these measures on human interests may be disputed. Tools are needed to depolarize such situations, foster understanding of the perspectives of people involved, and find common ground. We used Q methodology to explore stakeholders' perspectives on conservation and management of grizzly bears (Ursus arctos horribilis) in Banff National Park and the Bow River watershed of Alberta, Canada. Twenty-nine stakeholders participated in the study, including local residents, scientists, agency employees, and representatives of nongovernmental conservation organizations and other interest groups. Participants rank ordered a set of statements to express their opinions on the problems of grizzly bear management (I-IV) and a second set of statements on possible solutions to the problems (A-C). Factor analysis revealed that participants held 4 distinct views of the problems: individuals associated with factor I emphasized deficiencies in goals and plans; those associated with factor II believed that problems had been exaggerated; those associated with factor III blamed institutional flaws such as disjointed management and inadequate resources; and individuals associated with factor IV blamed politicized decision making. There were 3 distinct views about the best solutions to the problems: individuals associated with factor A called for increased conservation efforts; those associated with factor B wanted reforms in decision-making processes; and individuals associated with factor C supported active landscape management. We connected people's definitions of the problem with their preferred solutions to form 5 overall problem narratives espoused by groups in the study: the problem is deficient goals and plans, the solution is to prioritize conservation efforts (planning-oriented conservation advocates); the problem is flawed institutions, the solution is to prioritize conservation efforts (institutionally-oriented conservation advocates); the problems have been exaggerated, but there is a need to improve decision-making processes (optimistic decision-process reformers); the problems have been exaggerated, but managers should more actively manage the landscape (optimistic landscape managers); and the problem is politicized decision making, solutions vary (democratizers). Although these 5 groups differed on many issues, they agreed that the population of grizzly bears is vulnerable to extirpation, human use of the area should be designed around ecological constraints, and more inclusive decision-making processes are needed. We used our results to inform a series of workshops in which stakeholders developed and agreed on new management strategies that were implemented by Parks Canada. Our research demonstrates the usefulness of Q method to illuminate people's perspectives and identify common ground in settings where conservation is contested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号