首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   99篇
  国内免费   529篇
安全科学   44篇
废物处理   125篇
环保管理   44篇
综合类   709篇
基础理论   144篇
污染及防治   181篇
评价与监测   20篇
社会与环境   5篇
灾害及防治   1篇
  2024年   3篇
  2023年   21篇
  2022年   42篇
  2021年   46篇
  2020年   40篇
  2019年   67篇
  2018年   61篇
  2017年   47篇
  2016年   50篇
  2015年   66篇
  2014年   77篇
  2013年   78篇
  2012年   80篇
  2011年   84篇
  2010年   42篇
  2009年   72篇
  2008年   30篇
  2007年   68篇
  2006年   34篇
  2005年   43篇
  2004年   25篇
  2003年   22篇
  2002年   27篇
  2001年   32篇
  2000年   19篇
  1999年   26篇
  1998年   12篇
  1997年   12篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有1273条查询结果,搜索用时 250 毫秒
771.
为探究纳米氧化铜(CuO NPs)在镉(Cd)胁迫下对作物生长、生理特性和重金属吸收的影响,采用水培实验,以夏绿2号小油菜为供试植物,研究了CuO NPs (0、10、20和50 mg ·L-1)和Cd (0、1和5 μmol ·L-1)单一和复配处理下小油菜鲜重、光合色素、丙二醛含量(MDA)、抗氧化酶活性[过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)和谷胱甘肽还原酶(GR)]以及Cu和Cd含量.结果表明,在单一CuO NPs处理下,小油菜鲜重以及CAT、POD、GR酶活性总体上受到抑制,叶绿素含量和SOD活性随浓度增加呈现出先增加后降低趋势,而小油菜叶部、根部MDA含量以及亚细胞中Cu含量随投加量增加而增加.1 μmol ·L-1Cd处理下,添加CuO NPs促进了小油菜生长,鲜重较对照增加了8.70%~44.87%,当Cd浓度达到5 μmol ·L-1时,低浓度CuO NPs (10 mg ·L-1)处理表现为促进植物生长,高浓度(50 mg ·L-1)处理则呈抑制效应.不同Cd处理下添加CuO NPs均提高了小油菜的光合色素和MDA含量,其中小油菜叶部MDA含量较对照增加了4.34%~36.27%,根部MDA含量增加了13.43%~131.04%.Cd浓度为1 μmol ·L-1处理下施加CuO NPs后,小油菜叶部CAT和GR活性均下降,POD活性上升;当Cd浓度达到5 μmol ·L-1时,CuO NPs提高了小油菜叶部POD活性,抑制了SOD和GR活性,CAT活性随浓度升高呈现先上升后下降的趋势.CuO NPs与Cd表现出拮抗作用,添加CuO NPs后,1 μmol ·L-1 Cd处理下小油菜叶部和根部Cd含量最大降幅分别为45.64%和33.39%,5 μmol ·L-1 Cd处理下叶部和根部Cd含量最大降幅分别为18.25%和25.35%,小油菜亚细胞器中Cu和Cd质量分数下降,可溶性组分质量分数上升.综上所述,低浓度下CuO NPs可以促进Cd胁迫下植物生长,抑制植物对Cd吸收,但会增加植物氧化损伤.  相似文献   
772.
不同硅铝比Fe-ZSM-5催化剂对氧化亚氮催化分解性能的研究   总被引:1,自引:0,他引:1  
以不同硅铝比的H-ZSM-5分子筛为载体,采用离子交换法和化学气相沉积法制备Fe-ZSM-5催化剂,并用XRD、BET、TEM、UV-vis和NH3-TPD等表征手段对催化剂进行分析,研究催化剂中铁的存在状态.结果表明,分子筛的硅铝比影响铁在分子筛中的分布形态,化学气相沉积法和热离子交换法制得硅铝比为25的Fe-ZSM-5-25分子筛催化剂上均匀地分布着粒径为8 nm左右的纳米氧化铁颗粒,并且Fe-ZSM-5-25分子筛催化剂比Fe-ZSM-5-300更容易形成Fe3+x O y团簇.制得的Fe-ZSM-5分子筛催化剂催化分解氧化亚氮(N2O),结果表明,相同的制备方法,硅铝比小的Fe-ZSM-5-25催化剂对N2O分解活性更好;相同硅铝比的Fe-ZSM-5催化剂,采用化学气相沉积法制得的对N2O分解活性最好.另外,O2的存在对Fe-ZSM-5上N2O催化分解活性有抑制作用,而NO对N2O催化分解活性展示了一定的正效应.最后,经过100 h的连续反应,Fe-ZSM-5催化剂依然能够保持催化活性.  相似文献   
773.
生物碳的物理结构与化学成分对土壤氧化亚氮排放的影响   总被引:2,自引:1,他引:1  
为探究生物碳对土壤中重要温室气体氧化亚氮(N2O)排放的影响机制,将生物碳的可溶性化学成分和稳定的物理结构分离后得到浸提液和碳骨架,设置了4种不同的实验处理方式:土壤(对照)、土壤+生物碳、土壤+浸提液、土壤+碳骨架,进行了为期90 d的室内培养试验.实验结果显示,在培养前期(前7 d),添加生物碳和碳骨架的处理都显著抑制了土壤N2O的释放,且抑制程度相似,最高均可达80%,而添加浸提液的处理却显著促进了土壤N2O的释放.因此,土壤添加生物碳后对N2O排放的抑制作用主要归因于生物碳的物理结构,生物碳的物理结构可以有效地提高土壤的pH值、吸附土壤及其自身含有的可能促进N2O释放的化学物质,从而减少土壤中N2O的产生和排放.  相似文献   
774.
Bionitrification is considered to be a potential source of nitrous oxide (N2O) emissions, which are produced as a by-product during the nitrogen removal process. To investigate the production of N2O during the process of nitrogen removal via nitrite, a granular sludge was studied using a labscale sequence batch reactor operated with real-time control. The total production of N2O generated during the nitrification and denitrification processes were 1.724 mg/L and 0.125 mg/L, respectively, demonstrating that N2O is produced during both processes, with the nitrification phase generating larger amount. In addition, due to the NEO-N mass/oxidized ammonia mass ratio, it can be concluded that nitrite accumulation has a positive influence on N2O emissions. Results obtained from PCRDGGE analysis demonstrate that a specific Nitrosomonas microorganism is related to N2O emission.  相似文献   
775.
Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A^2O process had the highest CO2 emission factor of 319.3 g CO2/kg CODremoved, and the highest CH4 and N2O emission factors of 3.3 g CH4/kg CODremoved and 3.6 g N2O/kg TNremoved were observed in the Orbal oxidation ditch process.  相似文献   
776.
A 52-day continuous semi-static waterborne exposure (test media renewed daily) regimen was employed to investigate the accumulation and elimination profiles of two iron oxide nanomaterials (nano-Fe2O3 and nano-Fe3O4) in zebrafish (Danio rerio). Adult zebrafish were exposed to nanomaterial suspensions with initial concentrations of 4.0 and 10.0 mg/L for 28 days and then were moved to clean water for 24 days to perform the elimination experiment. Fe content was measured in fish body and feces to provide data on accumulation and elimination of the two iron oxide nanomaterials in zebrafish. The experiment revealed that: (1) high accumulation of nano-Fe2O3 and nano-Fe3O4 were found in zebrafish, with maximum Fe contents, respectively, of 1.32 and 1.25 mg/g for 4.0 mg/L treatment groups and 1.15 and 0.90 mg/g for 10.0 mg/L treatment groups; (2) accumulated nanoparticles in zebrafish can be eliminated efficiently (the decrease of body burden of Fe conforms to a first-order decay equation) when fish were moved to nanoparticle-free water, and the elimination rates ranged from 86% to 100% by 24 days post-exposure; and (3) according to analysis of Fe content in fish excrement in the elimination phase, iron oxide nanomaterials may be adsorbed via the gastrointestinal tract, and stored for more than 12 days.  相似文献   
777.
Transport behaviors of graphene oxide nanoparticles (GONPs) in saturated porous media were examined as a function of the presence and concentration of anionic surfactant (SDBS) and non-ionic surfactant (Triton X-100) under different ionic strength (IS). The results showed that the GONPs were retained obviously in the sand columns at both IS of 50 and 200 mmol/L, and they were more mobile at lower IS. The presence and concentration of surfactants could enhance the GONP transport, particularly as observed at higher IS. It was interesting to see that the GONP transport was surfactant type dependent, and SDBS was more effective to facilitate GONP transport than Triton X-100 in our experimental conditions. The advection–dispersion–retention numerical modeling followed this trend and depicted the difference quantitatively. Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction calculations also were performed to interpret these effects, indicating that secondary minimum deposition was critical in this study.  相似文献   
778.
Surface water methane (CH4) and nitrous oxide (N2O) concentrations and fluxes were investigated in two subtropical coastal embayments (Bramble Bay and Deception Bay, which are part of the greater Moreton Bay, Australia). Measurements were done at 23 stations in seven campaigns covering different seasons during 2010–2012. Water–air fluxes were estimated using the Thin Boundary Layer approach with a combination of wind and currents-based models for the estimation of the gas transfer velocities. The two bays were strong sources of both CH4 and N2O with no significant differences in the degree of saturation of both gases between them during all measurement campaigns. Both CH4 and N2O concentrations had strong temporal but minimal spatial variability in both bays. During the seven seasons, CH4 varied between 500% and 4000% saturation while N2O varied between 128 and 255% in the two bays. Average seasonal CH4 fluxes for the two bays varied between 0.5 ± 0.2 and 6.0 ± 1.5 mg CH4/(m2·day) while N2O varied between 0.4 ± 0.1 and 1.6 ± 0.6 mg N2O/(m2·day). Weighted emissions (t CO2-e) were 63%–90% N2O dominated implying that a reduction in N2O inputs and/or nitrogen availability in the bays may significantly reduce the bays' greenhouse gas (GHG) budget. Emissions data for tropical and subtropical systems is still scarce. This work found subtropical bays to be significant aquatic sources of both CH4 and N2O and puts the estimated fluxes into the global context with measurements done from other climatic regions.  相似文献   
779.
Microcystin-LR (MC-LR) is the most abundant and toxic microcystin congener and has been classified as a potential human carcinogen (Group 2B) by the International Agency for Research on Cancer. However, the mechanisms underlying the genotoxic effects of MC-LR during chronic exposure are still poorly understood. In the present study, human–hamster hybrid (AL) cells were exposed to MC-LR for varying lengths of time to investigate the role of nitrogen radicals in MC-LR-induced genotoxicity. The mutagenic potential at the CD59 locus was more than 2-fold higher (p < 0.01) in AL cells exposed to a cytotoxic concentration (1 μmol/L) of MC-LR for 30 days than in untreated control cells, which was consistent with the formation of micronucleus. MC-LR caused a dose-dependent increase in nitric oxide (NO) production in treated cells. Moreover, this was blocked by concurrent treatment with the NO synthase inhibitor NG-methyl-l-arginine (l-NMMA), which suppressed MC-LR-induced mutations as well. The survival of mitochondrial DNA-depleted (ρ0) AL cells was markedly decreased by MC-LR treatment compared to that in AL cells, while the CD59 mutant fraction was unaltered. These results provided clear evidence that the genotoxicity associated with chronic MC-LR exposure in mammalian cells was mediated by NO and might be considered as a basis for the development of therapeutics that prevent carcinogenesis.  相似文献   
780.
Municipal Solid Waste in general and its organic fraction in particular is a potential renewable and non-seasonal resource. In this work, a life cycle assessment has been performed to evaluate the environmental impacts of two future scenarios using biogas produced from the organic fraction of municipal solid waste (OFMSW) to supply energy to a group of dwellings, respectively comprising distributed generation using solid oxide fuel cell (SOFC) micro-CHP systems and condensing boilers. The London Borough of Greenwich is taken as the reference case study. The system is designed to assess how much energy demand can be met and what is the best way to use the digestible waste for distributed energy purposes.The system is compared with two alternative scenarios fuelled by natural gas: a reference scenario, where the electricity is supplied by the grid and the heat is supplied from condensing boilers, and a fuel cell micro-CHP system. The results show that, although OFMSW alone can only supply between 1% and 4% of the total energy demand of the Borough, a saving of ∼130 tonnes of CO2 eq per year per dwelling equipped with micro-CHP is still achievable compared with the reference scenario. This is primarily due to the surplus electricity produced by the fuel cell when the micro-CHP unit is operated to meet the heat demand. Use of biogas to produce heat only is therefore a less desirable option compared with combined heat and power production. Further investigation is required to identify locally available feedstock other than OFMSW in order to increase the proportion of energy demand that can be met in this way.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号