首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   50篇
  国内免费   157篇
安全科学   4篇
废物处理   2篇
环保管理   188篇
综合类   246篇
基础理论   94篇
污染及防治   24篇
评价与监测   23篇
社会与环境   15篇
  2024年   4篇
  2023年   10篇
  2022年   11篇
  2021年   10篇
  2020年   15篇
  2019年   22篇
  2018年   20篇
  2017年   19篇
  2016年   27篇
  2015年   31篇
  2014年   29篇
  2013年   45篇
  2012年   38篇
  2011年   43篇
  2010年   37篇
  2009年   23篇
  2008年   16篇
  2007年   20篇
  2006年   21篇
  2005年   19篇
  2004年   15篇
  2003年   9篇
  2002年   9篇
  2001年   12篇
  2000年   16篇
  1999年   9篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有596条查询结果,搜索用时 46 毫秒
521.
Scirpus littoralis is a wetland plant commonly found in Yamuna flood plains of Delhi, India. The ability of Scirpus littoralis to take up and translocate five metals- Mn, Ni, Cu, Zn and Pb from fly ash dosed and metal spiked soils were studied under waterlogged and field conditions for 90 days. Scirpus littoralis accumulated Mn, Ni, Cu, Zn and Pb upto a maximum of 494.92, 56.37, 144.98, 207.95 and 93.08 ppm dry wt., respectively in below ground organs (BO) in 90 days time. The metal content ratios BO/soil (B/S) were higher than shoot/soil ratios (T/S) for all the metals, the highest being for Ni. Metal ratios BO/water (B/W) were also higher than shoot/water (T/W) ratios but the B/W ratio was maximum for Zn. The changes in nutrient status (N, P) in soil water and plants were also studied at interval of 30 days. The Pearson's correlation between metal uptake and N, P uptake were calculated. All the metals except Ni showed negative correlation with nitrogen but they were all non-significant. However, P uptake showed positive correlations with all the metals and all were significant at 1% confidence limit.  相似文献   
522.
The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.  相似文献   
523.
This review summarizes how conservation benefits are maximized when in‐field and edge‐of‐field buffers are integrated with each other and with other conservation practices such as residue management and grade control structures. Buffers improve both surface and subsurface water quality. Soils under permanent buffer vegetation generally have higher organic carbon concentrations, higher infiltration capacities, and more active microbial populations than similar soils under annual cropping. Sediment can be trapped with rather narrow buffers, but extensive buffers are better at transforming dissolved pollutants. Buffers improve surface runoff water quality most efficiently when flows through them are slow, shallow, and diffuse. Vegetative barriers ‐ narrow strips of dense, erect grass ‐ can slow and spread concentrated runoff. Subsurface processing is best on shallow soils that provide increased hydrologic contact between the ground water plume and buffer vegetation. Vegetated ditches and constructed wetlands can act as “after‐field” conservation buffers, processing pollutants that escape from fields. For these buffers to function efficiently, it is critical that in‐field and edge‐of‐field practices limit peak runoff rate and sediment yield in order to maximize contact time with buffer vegetation and minimize the need for cleanout excavation that destroys vegetation and its processing capacity.  相似文献   
524.
ABSTRACT: Starting in 1998, a study was conducted to characterize storm water quality from predominant land use types in a coastal watershed along the south central coast of Florida, namely citrus, pasture, urban, natural wetland, row crop, dairy, and golf courses. Sixty‐three sampling sites were located at strategic points on drainage conveyances for each of seven specific land use areas. Runoff samples were collected following storm events that met defined rainfall criteria for a period of 30 months. Nitrogen (N), phosphorus (P), heavy metals, pesticides, and other water quality parameters were determined, and the results were analyzed to compare and characterize land uses as relative sources for these constituents in runoff. Results showed that runoff from most land use types had low dissolved oxygen concentration and that sediment and nutrient concentrations were closely related to land use, particularly to the amount of fertilizer applied in each land use. Among the eight heavy metals tested, copper was the most frequently detected and was mostly associated with runoff from citrus and golf course land uses. High levels of arsenic were also detected in golf course runoff. The most frequently detected pesticide was simazine from citrus. The information and methodologies presented may facilitate pollution source characterization and ecological restoration efforts.  相似文献   
525.
ABSTRACT: Wetlands that treat holding pond effluent can be designed to utilize the pond storage capacity to allow flexibility in system management. Management of a wetland as a sequencing batch reactor can simplify operation and control detention times, but little performance data on such systems are available. The objective of this study was to evaluate the batch reactor wetland concept by quantifying removal of chemical oxygen demand (COD), total suspended sediments (TSS), total nitrogen (TN), ammonium (NH4), nitrate (NO3), total phosphorus (TP), and orthophosphate (PO4) and by assessing the suitability of first‐order kinetics. Weekly samples were collected following batch loadings of wetland cells with high concentration or low concentration dairy holding pond wastewater during both fall and spring seasons. During three‐week batch periods without plants, overall mass removal averaged 54 percent for COD, 58 percent for TSS, 90 percent for TN, 72 percent for NH4, ‐54 percent for NO3, 38 percent for TP, and ‐8 percent for PO4. Best fit, first‐order kinetic rate constant (k) and background concentration (C*) for COD varied by season, with k = 0.024/d and C*= 0 mg/l in fall and k = 0.056/d and C*= 200 mg/l in spring. Ammonium exhibited a consistent C*= 0 mg/l but had variable rate constants of k = 0.121/d for low concentration treatments and k = 0.079/d for high concentration treatments. Using first‐order kinetics was also appropriate for TN, with k = 0.061/d and C*= 0 mg/l for all loadings and seasons, but was not consistently appropriate for TP or PO4. These results support the use of first‐order kinetics to describe treatment in batch reactor wastewater treatment wetlands without vegetation, perhaps during the establishment phase or in open water zones of vegetated wetlands. Further work is needed to assess the effects of vegetation.  相似文献   
526.
ABSTRACT: Coastal watersheds in the southeastern United States are rapidly changing due to population growth and attendant increases in residential development, industry, and tourism related commerce. This research examined spatial and temporal patterns of nutrient concentrations in streams from 10 small watersheds (< 4 km2) that drain into Murrells Inlet (impacted) and North Inlet (pristine), two high salinity estuaries along the South Carolina coast. Monthly grab samples were collected during baseflow during 1999 and analyzed for total and dissolved inorganic and organic forms of nitrogen and phosphorus. Data were grouped into forested wetland creeks (representing predevelopment reference sites), urban creeks, and urban ponds. DON and NH4 concentrations were greater in forested streams than in urban streams. NO3 and TP concentrations were greatest in urban streams. Seasonally, concentrations were highest during summer for TN, NH4, DON, and TP, while NO3 concentrations were greatest during winter. Nutrient ratios clearly highlighted the reduction in organic nitrogen due to coastal development. Multiple regression models to predict instream nutrient concentrations from land use in Murrells Inlet suggest that effects are not significant (small r2). The findings indicate that broad land use/land cover classes cannot be used to predict nutrient concentrations in streams in the very small watersheds in our study areas.  相似文献   
527.
ABSTRACT: Most studies of nutrient loss from small study watersheds ignore a potentially important loss transported by the suspended sediment load. We proposed that the geology and vegetation of a watershed are predictors of the nutrient and heavy metal transporting capacity of its suspended sediment. Analyses of acid-digestable and extractable nutrients showed differences for sediments derived from ponderosa pine forests in the Southwest on different geologies. These differences were similar for soil, stream bank, and stream channel material for a given site. Suspended sediment collections had nutrient concentrations similar to those of stream channel collections. Different vegetation on a given geology affected primarily the organic matter content, cation exchange capacity, total P, and levels of extractable nutrients in sediment.  相似文献   
528.
ABSTRACT: The impoundment of Richard B. Russell Lake resulted in the inundation of 3490 ha of forested area or 33 percent of the total area of the lake. Estimates of the total inundated leaf litter biomass were combined with a leaf litter decomposition study to determine the nutrient load and dissolved oxygen demand to the reservoir. Hickory leaf bags broke down most rapidly at the 3-m and 28-rn depths, followed by short-needle pine, white oak, a hardwood litter mixture, beech, and red oak. Leaf bags incubated at the 3-m depth exhibited significantly higher breakdown rates than those at the 28-m depth for most leaf types, due to differences in dissolved oxygen and temperature. Respiration rates of litter were also higher at the 3-m depth. Most leaf types accumulated nitrogen and phosphorus and lost organic carbon after an initial leaching period. Richard B. Russell Lake exhibited extensive anoxia and the buildup of total organic carbon, nitrogen, and phosphorus during summer stratification. Leaf litter breakdown accounted for 64 percent of the organic carbon increase but acted as a sink for nitrogen and phosphorus. The dissolved oxygen demand of the litter accounted for over 50 percent of the demand incurred in the lake.  相似文献   
529.
ABSTRACT: Sediment-water exchanges of ammonium, nitrate, and phosphate are incorporated into a eutrophication model of Gunston Cove, Virginia. The exchange rates are obtained from laboratory measurements and are modeled as empirical functions of temperature, concentration, and pH. Simulation of the period from June 1 to September 30, 1983, indicates nitrogen, phosphorus, and chlorophyll ‘a’ are correctly modeled only when the sediment-water nutrient exchanges are taken into account.  相似文献   
530.
EfectsofclippingondrymaterproductionandnutrientsinthefernlandofHongKongGuanDongshengDepartmentofEnvironmentalScience,Zhongs...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号