首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1181篇
  免费   437篇
  国内免费   4篇
安全科学   3篇
环保管理   4篇
综合类   29篇
基础理论   1555篇
污染及防治   14篇
评价与监测   4篇
社会与环境   11篇
灾害及防治   2篇
  2023年   90篇
  2022年   84篇
  2021年   113篇
  2020年   114篇
  2019年   106篇
  2018年   89篇
  2017年   117篇
  2016年   106篇
  2015年   129篇
  2014年   137篇
  2013年   119篇
  2012年   86篇
  2011年   95篇
  2010年   117篇
  2009年   25篇
  2008年   48篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1983年   1篇
  1982年   2篇
  1975年   1篇
排序方式: 共有1622条查询结果,搜索用时 935 毫秒
871.
The impacts of land‐use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low‐intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low‐intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low‐intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land‐use classes, but only 4 species were unique to primary forests. Low‐, medium‐, and high‐intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low‐intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land‐use intensity increased, especially in high‐intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification—especially increased grazing—will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low‐intensity agricultural lands are not extensively converted to high‐intensity pastures.  相似文献   
872.
When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework can be applied across multiple spatial scales to understand and mitigate impacts of industry on wildlife. We estimated risk to Golden Eagles (Aquila chrysaetos) from wind energy development in 3 topographically distinct regions of the central Appalachian Mountains of Pennsylvania (United States) based on models of resource selection of wind facilities (n = 43) and of northbound migrating eagles (n = 30). Risk to eagles from wind energy was greatest in the Ridge and Valley region; all 24 eagles that passed through that region used the highest risk landscapes at least once during low altitude flight. In contrast, only half of the birds that entered the Allegheny Plateau region used highest risk landscapes and none did in the Allegheny Mountains. Likewise, in the Allegheny Mountains, the majority of wind turbines (56%) were situated in poor eagle habitat; thus, risk to eagles is lower there than in the Ridge and Valley, where only 1% of turbines are in poor eagle habitat. Risk within individual facilities was extremely variable; on average, facilities had 11% (SD 23; range = 0–100%) of turbines in highest risk landscapes and 26% (SD 30; range = 0–85%) of turbines in the lowest risk landscapes. Our results provide a mechanism for relocating high‐risk turbines, and they show the feasibility of this novel and highly adaptable framework for managing risk of harm to wildlife from industrial development. Evaluación del Riesgo para las Aves por el Desarrollo de Energía Eólica Industrial Mediante Modelos de Selección de Recursos Pareados.  相似文献   
873.
Management strategies to reduce the risks to human life and property from wildfire commonly involve burning native vegetation. However, planned burning can conflict with other societal objectives such as human health and biodiversity conservation. These conflicts are likely to intensify as fire regimes change under future climates and as growing human populations encroach farther into fire‐prone ecosystems. Decisions about managing fire risks are therefore complex and warrant more sophisticated approaches than are typically used. We applied a multicriteria decision making approach (MCDA) with the potential to improve fire management outcomes to the case of a highly populated, biodiverse, and flammable wildland–urban interface. We considered the effects of 22 planned burning options on 8 objectives: house protection, maximizing water quality, minimizing carbon emissions and impacts on human health, and minimizing declines of 5 distinct species types. The MCDA identified a small number of management options (burning forest adjacent to houses) that performed well for most objectives, but not for one species type (arboreal mammal) or for water quality. Although MCDA made the conflict between objectives explicit, resolution of the problem depended on the weighting assigned to each objective. Additive weighting of criteria traded off the arboreal mammal and water quality objectives for other objectives. Multiplicative weighting identified scenarios that avoided poor outcomes for any objective, which is important for avoiding potentially irreversible biodiversity losses. To distinguish reliably among management options, future work should focus on reducing uncertainty in outcomes across a range of objectives. Considering management actions that have more predictable outcomes than landscape fuel management will be important. We found that, where data were adequate, an MCDA can support decision making in the complex and often conflicted area of fire management.  相似文献   
874.
Conservation planning and biodiversity assessments need quantitative targets to optimize planning options and assess the adequacy of current species protection. However, targets aiming at persistence require population‐specific data, which limit their use in favor of fixed and nonspecific targets, likely leading to unequal distribution of conservation efforts among species. We devised a method to derive equitable population targets; that is, quantitative targets of population size that ensure equal probabilities of persistence across a set of species and that can be easily inferred from species‐specific traits. In our method, we used models of population dynamics across a range of life‐history traits related to species’ body mass to estimate minimum viable population targets. We applied our method to a range of body masses of mammals, from 2 g to 3825 kg. The minimum viable population targets decreased asymptotically with increasing body mass and were on the same order of magnitude as minimum viable population estimates from species‐ and context‐specific studies. Our approach provides a compromise between pragmatic, nonspecific population targets and detailed context‐specific estimates of population viability for which only limited data are available. It enables a first estimation of species‐specific population targets based on a readily available trait and thus allows setting equitable targets for population persistence in large‐scale and multispecies conservation assessments and planning.  相似文献   
875.
The proliferation of linear infrastructure such as roads and railways is a major global driver of cumulative biodiversity loss. One strategy for reducing habitat loss associated with development is to encourage linear infrastructure providers and users to share infrastructure networks. We quantified the reductions in biodiversity impact and capital costs under linear infrastructure sharing of a range of potential mine to port transportation links for 47 mine locations operated by 28 separate companies in the Upper Spencer Gulf Region of South Australia. We mapped transport links based on least‐cost pathways for different levels of linear‐infrastructure sharing and used expert‐elicited impacts of linear infrastructure to estimate the consequences for biodiversity. Capital costs were calculated based on estimates of construction costs, compensation payments, and transaction costs. We evaluated proposed mine‐port links by comparing biodiversity impacts and capital costs across 3 scenarios: an independent scenario, where no infrastructure is shared; a restricted‐access scenario, where the largest mining companies share infrastructure but exclude smaller mining companies from sharing; and a shared scenario where all mining companies share linear infrastructure. Fully shared development of linear infrastructure reduced overall biodiversity impacts by 76% and reduced capital costs by 64% compared with the independent scenario. However, there was considerable variation among companies. Our restricted‐access scenario showed only modest biodiversity benefits relative to the independent scenario, indicating that reductions are likely to be limited if the dominant mining companies restrict access to infrastructure, which often occurs without policies that promote sharing of infrastructure. Our research helps illuminate the circumstances under which infrastructure sharing can minimize the biodiversity impacts of development.  相似文献   
876.
Extinctions typically have ecological drivers, such as habitat loss. However, extinction events are also influenced by policy and management settings that may be antithetical to biodiversity conservation, inadequate to prevent extinction, insufficiently resourced, or poorly implemented. Three endemic Australian vertebrate species—the Christmas Island pipistrelle (Pipistrellus murrayi), Bramble Cay melomys (Melomys rubicola), and Christmas Island forest skink (Emoia nativitatis)—became extinct from 2009 to 2014. All 3 extinctions were predictable and probably preventable. We sought to identify the policy, management, research, and other shortcomings that contributed to their extinctions or failed to prevent them. These included a lack within national environmental legislation and policy of explicit commitment to the prevention of avoidable extinctions, lack of explicit accountability, inadequate resources for conservation (particularly for species not considered charismatic or not of high taxonomic distinctiveness), inadequate biosecurity, a slow and inadequate process for listing species as threatened, recovery planning that failed to consider the need for emergency response, inability of researchers to identify major threatening factors, lack of public engagement and involvement in conservation decisions, and limited advocacy. From these 3 cases, we recommend: environmental policy explicitly seeks to prevent extinction of any species and provides a clear chain of accountability and an explicit requirement for public inquiry following any extinction; implementation of a timely and comprehensive process for listing species as threatened and for recovery planning; reservation alone not be assumed sufficient to maintain species; enhancement of biosecurity measures; allocation of sufficient resources to undertake actions necessary to prevent extinction; monitoring be considered a pivotal component of the conservation response; research provides timely identification of factors responsible for decline and of the risk of extinction; effective dissemination of research results; advocacy by an informed public for the recovery of threatened species; and public involvement in governance of the recovery process. These recommendations should be applicable broadly to reduce the likelihood and incidence of extinctions.  相似文献   
877.
Growing energy demand has increased the need to manage conflicts between energy production and the environment. As an example, shale‐gas extraction requires substantial surface infrastructure, which fragments habitats, erodes soils, degrades freshwater systems, and displaces rare species. Strategic planning of shale‐gas infrastructure can reduce trade‐offs between economic and environmental objectives, but the specific nature of these trade‐offs is not known. We estimated the cost of avoiding impacts from land‐use change on forests, wetlands, rare species, and streams from shale‐energy development within leaseholds. We created software for optimally siting shale‐gas surface infrastructure to minimize its environmental impacts at reasonable construction cost. We visually assessed sites before infrastructure optimization to test whether such inspection could be used to predict whether impacts could be avoided at the site. On average, up to 38% of aggregate environmental impacts of infrastructure could be avoided for 20% greater development costs by spatially optimizing infrastructure. However, we found trade‐offs between environmental impacts and costs among sites. In visual inspections, we often distinguished between sites that could be developed to avoid impacts at relatively low cost (29%) and those that could not (20%). Reductions in a metric of aggregate environmental impact could be largely attributed to potential displacement of rare species, sedimentation, and forest fragmentation. Planners and regulators can estimate and use heterogeneous trade‐offs among development sites to create industry‐wide improvements in environmental performance and do so at reasonable costs by, for example, leveraging low‐cost avoidance of impacts at some sites to offset others. This could require substantial effort, but the results and software we provide can facilitate the process.  相似文献   
878.
Tanzania, arguably mainland Africa's most important nation for conservation, is losing habitat and natural resources rapidly. Moving away from a charcoal energy base and developing sustainable finance mechanisms for natural forests are critical to slowing persistent deforestation. Addressing governance and capacity deficits, including law enforcement, technical skills, and funding, across parts of the wildlife sector are key to effective wildlife protection. These changes could occur in tandem with bringing new models of natural resource management into play that include capacity building, corporate payment for ecosystem services, empowering nongovernmental organizations in law enforcement, greater private‐sector involvement, and novel community conservation strategies. The future of Tanzania's wildlife looks uncertain—as epitomized by the current elephant crisis—unless the country confronts issues of governance, embraces innovation, and fosters greater collaboration with the international community.  相似文献   
879.
Funding for species conservation is insufficient to meet the current challenges facing global biodiversity, yet many programs use expensive single‐species recovery actions and neglect broader management that addresses threatening processes. Arid Australia has the world's worst modern mammalian extinction record, largely attributable to competition from introduced herbivores, particularly European rabbits (Oryctolagus cuniculus) and predation by feral cats (Felis catus) and foxes (Vulpes vulpes). The biological control agent rabbit hemorrhagic disease virus (RHDV) was introduced to Australia in 1995 and resulted in dramatic, widespread rabbit suppression. We compared the area of occupancy and extent of occurrence of 4 extant species of small mammals before and after RHDV outbreak, relative to rainfall, sampling effort, and rabbit and predator populations. Despite low rainfall during the first 14 years after RHDV, 2 native rodents listed by the International Union for Conservation of Nature (IUCN), the dusky hopping‐mouse (Notomys fuscus) and plains mouse (Pseudomys australis), increased their extent of occurrence by 241–365%. A threatened marsupial micropredator, the crest‐tailed mulgara (Dasycercus cristicauda), underwent a 70‐fold increase in extent of occurrence and a 20‐fold increase in area of occupancy. Both bottom‐up and top‐down trophic effects were attributed to RHDV, namely decreased competition for food resources and declines in rabbit‐dependent predators. Based on these sustained increases, these 3 previously threatened species now qualify for threat‐category downgrading on the IUCN Red List. These recoveries are on a scale rarely documented in mammals and give impetus to programs aimed at targeted use of RHDV in Australia, rather than simply employing top‐down threat‐based management of arid ecosystems. Conservation programs that take big‐picture approaches to addressing threatening processes over large spatial scales should be prioritized to maximize return from scarce conservation funding. Further, these should be coupled with long‐term ecological monitoring, a critical tool in detecting and understanding complex ecosystem change.  相似文献   
880.
Environmental education strategies have customarily placed substantial focus on enhancing ecological knowledge and literacy with the hope that, upon discovering relevant facts and concepts, participants will be better equipped to process and dissect environmental issues and, therefore, make more informed decisions. The assumption is that informed citizens will become active citizens––enthusiastically lobbying for, and participating in, conservation‐oriented action. We surveyed and interviewed and used performance data from 432 participants in the Coastal Observation and Seabird Survey Team (COASST), a scientifically rigorous citizen science program, to explore measurable change in and links between understanding and action. We found that participation in rigorous citizen science was associated with significant increases in participant knowledge and skills; a greater connection to place and, secondarily, to community; and an increasing awareness of the relative impact of anthropogenic activities on local ecosystems specifically through increasing scientific understanding of the ecosystem and factors affecting it. Our results suggest that a place‐based, data‐rich experience linked explicitly to local, regional, and global issues can lead to measurable change in individual and collective action, expressed in our case study principally through participation in citizen science and community action and communication of program results to personal acquaintances and elected officials. We propose the following tenets of conservation literacy based on emergent themes and the connections between them explicit in our data: place‐based learning creates personal meaning making; individual experience nested within collective (i.e., program‐wide) experience facilitates an understanding of the ecosystem process and function at local and regional scales; and science‐based meaning making creates informed concern (i.e., the ability to discern both natural and anthropogenic forcing), which allows individuals to develop a personalized prioritization schema and engage in conservation action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号