首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11225篇
  免费   1439篇
  国内免费   6407篇
安全科学   1872篇
废物处理   550篇
环保管理   967篇
综合类   10342篇
基础理论   2359篇
环境理论   2篇
污染及防治   1820篇
评价与监测   581篇
社会与环境   349篇
灾害及防治   229篇
  2024年   53篇
  2023年   426篇
  2022年   611篇
  2021年   697篇
  2020年   693篇
  2019年   699篇
  2018年   585篇
  2017年   566篇
  2016年   662篇
  2015年   766篇
  2014年   691篇
  2013年   1220篇
  2012年   1193篇
  2011年   1242篇
  2010年   856篇
  2009年   977篇
  2008年   812篇
  2007年   988篇
  2006年   956篇
  2005年   708篇
  2004年   597篇
  2003年   507篇
  2002年   399篇
  2001年   332篇
  2000年   304篇
  1999年   253篇
  1998年   211篇
  1997年   186篇
  1996年   158篇
  1995年   146篇
  1994年   97篇
  1993年   94篇
  1992年   83篇
  1991年   57篇
  1990年   39篇
  1989年   31篇
  1988年   25篇
  1987年   16篇
  1986年   13篇
  1985年   5篇
  1984年   9篇
  1983年   13篇
  1982年   14篇
  1981年   11篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1973年   7篇
  1972年   5篇
  1971年   33篇
排序方式: 共有10000条查询结果,搜索用时 765 毫秒
651.
• UV/O3 process had higher TAIC mineralization rate than O3 process. • Four possible degradation pathways were proposed during TAIC degradation. • pH impacted oxidation processes with pH of 9 achieving maximum efficiency. • CO32– negatively impacted TAIC degradation while HCO3 not. • Cl can be radicals scavenger only at high concentration (over 500 mg/L Cl). Triallyl isocyanurate (TAIC, C12H15N3O3) has featured in wastewater treatment as a refractory organic compound due to the significant production capability and negative environmental impact. TAIC degradation was enhanced when an ozone(O3)/ultraviolet(UV) process was applied compared with the application of an independent O3 process. Although 99% of TAIC could be degraded in 5 min during both processes, the O3/UV process had a 70%mineralization rate that was much higher than that of the independent O3 process (9%) in 30 min. Four possible degradation pathways were proposed based on the organic compounds of intermediate products identified during TAIC degradation through the application of independent O3 and O3/UV processes. pH impacted both the direct and indirect oxidation processes. Acidic and alkaline conditions preferred direct and indirect reactions respectively, with a pH of 9 achieving maximum Total Organic Carbon (TOC) removal. Both CO32– and HCO3 decreased TOC removal, however only CO32– negatively impacted TAIC degradation. Effects of Cl as a radical scavenger became more marked only at high concentrations (over 500 mg/L Cl). Particulate and suspended matter could hinder the transmission of ultraviolet light and reduce the production of HO· accordingly.  相似文献   
652.
• The SRAO phenomena tended to occur only under certain conditions. • High amount of biomass and non-anaerobic condition is requirement for SRAO. • Anammox bacteria cannot oxidize ammonium with sulfate as electron acceptor. • AOB and AnAOB are mainly responsible for ammonium conversion. • Heterotrophic sulfate reduction mainly contributed to sulfate conversion. For over two decades, sulfate reduction with ammonium oxidation (SRAO) had been reported from laboratory experiments. SRAO was considered an autotrophic process mediated by anammox bacteria, in which ammonium as electron donor was oxidized by the electron acceptor sulfate. This process had been attributed to observed transformations of nitrogenous and sulfurous compounds in natural environments. Results obtained differed largely for the conversion mole ratios (ammonium/sulfate), and even the intermediate and final products of sulfate reduction. Thus, the hypothesis of biological conversion pathways of ammonium and sulfate in anammox consortia is implausible. In this study, continuous reactor experiments (with working volume of 3.8L) and batch tests were conducted under normal anaerobic (0.2≤DO<0.5 mg/L) / strict anaerobic (DO<0.2 mg/L) conditions with different biomass proportions to verify the SRAO phenomena and identify possible pathways behind substrate conversion. Key findings were that SRAO occurred only in cases of high amounts of inoculant biomass under normal anaerobic condition, while absent under strict anaerobic conditions for same anammox consortia. Mass balance and stoichiometry were checked based on experimental results and the thermodynamics proposed by previous studies were critically discussed. Thus anammox bacteria do not possess the ability to oxidize ammonium with sulfate as electron acceptor and the assumed SRAO could, in fact, be a combination of aerobic ammonium oxidation, anammox and heterotrophic sulfate reduction processes.  相似文献   
653.
• Highly efficient debromination of BDE-47 was achieved in the ZVZ/AA system. • BDE-47 debromination by the ZVZ/AA can be applied to a wide range of pH. • AA inhibits the formation of (hydr)oxide and accelerates the corrosion of ZVZ. • Reduction mechanism of BDE-47 debromination by the ZVZ/AA system was proposed. A new technique of zero-valent zinc coupled with ascorbic acid (ZVZ/AA) was developed and applied to debrominate the 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47), which achieved high conversion and rapid debromination of BDE-47 to less- or non-toxic forms. The reaction conditions were optimized by the addition of 100 mg/L ZVZ particles and 3 mmol/L AA at original solution pH= 4.00 using the solvent of methanol/H2O (v:v= 4:6), which could convert approximately 94% of 5 mg/L BDE-47 into lower-brominated diphenyl ethers within a 90 min at the ZVZ/AA system. The high debromination of BDE-47 was mainly attributed to the effect of AA that inhibits the formation of Zn(II)(hydr)oxide passivation layers and promotes the corrosion of ZVZ, which leads to increase the reactivity of ZVZ. Additionally, ion chromatography and gas chromatography mass spectrometry analyses revealed that bromine ion and lower-debromination diphenyl ethers formed during the reduction of BDE-47. Furthermore, based on the generation of the intermediates products, and its concentration changes over time, it was proposed that the dominant pathway for conversion of BDE-47 was sequential debromination and the final products were diphenyl ethers. These results suggested that the ZVZ/AA system has the potential for highly efficient debromination of BDE-47 from wastewater.  相似文献   
654.
• Effects of metabolic uncoupler TCS on the performances of GDMBR were evaluated. • Sludge EPS reduced and transformed into dissolved SMP when TCS was added. • Appropriate TCS increased the permeability and reduced cake layer fouling. • High dosage aggravated fouling due to compact cake layer with low bio-activity. The gravity-driven membrane bioreactor (MBR)system is promising for decentralized sewage treatment because of its low energy consumption and maintenance requirements. However, the growing sludge not only increases membrane fouling, but also augments operational complexities (sludge discharge). We added the metabolic uncoupler 3,3′,4′,5-tetrachlorosalicylanilide (TCS) to the system to deal with the mentioned issues. Based on the results, TCS addition effectively decreased sludge ATP and sludge yield (reduced by 50%). Extracellular polymeric substances (EPS; proteins and polysaccharides) decreased with the addition of TCS and were transformed into dissolved soluble microbial products (SMPs) in the bulk solution, leading to the break of sludge flocs into small fragments. Permeability was increased by more than two times, reaching 60–70 L/m2/h bar when 10–30 mg/L TCS were added, because of the reduced suspended sludge and the formation of a thin cake layer with low EPS levels. Resistance analyses confirmed that appropriate dosages of TCS primarily decreased the cake layer and hydraulically reversible resistances. Permeability decreased at high dosage (50 mg/L) due to the release of excess sludge fragments and SMP into the supernatant, with a thin but more compact fouling layer with low bioactivity developing on the membrane surface, causing higher cake layer and pore blocking resistances. Our study provides a fundamental understanding of how a metabolic uncoupler affects the sludge and bio-fouling layers at different dosages, with practical relevance for in situ sludge reduction and membrane fouling alleviation in MBR systems.  相似文献   
655.
• Physical and chemical properties and application of peracetic acid solution. • Determination method of high concentration peracetic acid. • Determination method of residual peracetic acid (low concentration). Peroxyacetic acid has been widely used in food, medical, and synthetic chemical fields for the past several decades. Recently, peroxyacetic acid has gradually become an effective alternative disinfectant in wastewater disinfection and has strong redox capacity for removing micro-pollutants from drinking water. However, commercial peroxyacetic acid solutions are primarily multi-component mixtures of peroxyacetic acid, acetic acid, hydrogen peroxide, and water. During the process of water treatment, peroxyacetic acid and hydrogen peroxide (H2O2) often coexist, which limits further investigation on the properties of peroxyacetic acid. Therefore, analytical methods need to achieve a certain level of selectivity, particularly when peroxyacetic acid and hydrogen peroxide coexist. This review summarizes the measurement and detection methods of peroxyacetic acid, comparing the principle, adaptability, and relative merits of these methods.  相似文献   
656.
• PAM degradation in thermophilic AD in comparison with mesophilic AD. • PAM degradation and its impact on thermophilic and mesophilic AD. • Enhanced methane yield in presence of PAM during thermophilic and mesophilic AD. • PAM degradation and microbial community analysis in thermophilic and mesophilic AD. Polyacrylamide (PAM) is generally employed in wastewater treatment processes such as sludge dewatering and therefore exists in the sludge. Furthermore, it degrades slowly and can deteriorate methane yield during anaerobic digestion (AD). The impact or fate of PAM in AD under thermophilic conditions is still unclear. This study mainly focuses on PAM degradation and enhanced methane production from PAM-added sludge during 15 days of thermophilic (55°C) AD compared to mesophilic (35°C) AD. Sludge and PAM dose from 10 to 50 g/kg TSS were used. The results showed that PAM degraded by 76% to 78% with acrylamide (AM) content of 0.2 to 3.3 mg/L in thermophilic AD. However, it degraded only 27% to 30% with AM content of 0.5 to 7.2 mg/L in mesophilic AD. The methane yield was almost 230 to 238.4 mL/g VSS on the 8th day in thermophilic AD but was 115.2 to 128.6 mL/g VSS in mesophilic AD. Mechanism investigation revealed that thermophilic AD with continuous stirring not only enhanced PAM degradation but also boosted the organics release from the sludge with added PAM and gave higher methane yield than mesophilic AD.  相似文献   
657.
硫酸雾测试方法若干问题思考   总被引:1,自引:1,他引:0  
简述了我国硫酸雾测试方法的发展历史,分析和总结了《固定污染源废气硫酸雾的测定离子色谱法》(HJ 544—2016)存在的一些争议和问题,包括硫酸雾的定义、测试方法的干扰控制等。分析认为,相比《硫酸工业污染物排放标准》(GB 26132—2010),HJ 544—2016对硫酸雾的定义更加合理。实验结果表明:硫酸盐是测试方法条件下的目标物,滤筒可以显著地捕捉硫酸盐。9组样品滤筒中,被测目标物所占比例为7.9%~69.1%;滤筒和前吸收液中,被测目标物所占比例为93.7%~97.8%。HJ 544—2016新增加的两级串联碱液吸收瓶可以较完全地捕集穿透滤筒后的硫酸雾,同时也会捕集SO2。SO2会对硫酸雾测试产生正干扰,约42.9%的SO2在被吸收后转化为硫酸雾。  相似文献   
658.
通过在西安市三环内6个功能区布设62个采样点,采样分析其表层土壤中邻苯二甲酸酯(PAEs)质量比及其构成特征。结果表明,西安市表层土壤中DMP、DEP、BBP、DnBP、DEHP和DnOP平均值分别为0.188 mg/kg、0.187 mg/kg、0.091 mg/kg、4.174 mg/kg、6.122 mg/kg和0.188 mg/kg,6种PAEs总质量比(∑6PAEs)范围为1.54 mg/kg^153.17 mg/kg,平均值为10.95 mg/kg。6个功能区∑6PAEs从高到低为交通区>工业区>混合区>公园>文教区>住宅区。与其他城市表层土壤中PAEs值比较发现,DMP处于高水平,DEP、DnBP、DEHP和∑6 PAEs处于较高水平,BBP和DnOP处于中等水平。  相似文献   
659.
可持续发展目标(SDGs)的提出,开启了人类可持续发展领域最宏大的政策实验,也为开展国际视野的比较公共政策研究提供了难得机遇。执行SDGs及国家可持续发展政策需要处理好中央政府与地方政府间关系,而政策试点是协调这一关系的重要政策工具。已有文献对经济政策试点做了较充分的研究,然而对旨在实现经济、社会与环境协调的可持续发展政策试点,现有研究尚缺乏成型理论。在复杂央地关系格局下,对于需持续投入成本且成果难以界定的可持续发展政策试点,其具有怎样的不同于经济政策试点的机制?此外,众多西方学者将美国作为政策试点研究的制度基础并视其为“民主实验室”。然而,政策试点在以中国为代表的不同体制国家中同样存在,并以多样的机制发挥作用。那么,不同国家体制内的可持续发展政策试点又有哪些异同?政策试点影响下中国既有的央地关系发生了怎样的重构?对此,本文基于最典型案例原则,选取中国与美国响应SDGs分别开展的政策试点进行比较研究。笔者识别了不同体制下试点机制的异同,指出中国基于“竞争申请制”开展的可持续发展政策试点强化了中央部委与地方政府间关系,形成了地方官员的可持续发展激励,保障了政策试点的实施。  相似文献   
660.
农地整治权属调整是实现农业规模化和现代化的重要手段,而农户有效参与是推动权属调整的内在动力,研究农地整治权属调整中农户认知对其行为响应的作用机制,有助于高效引导农户参与权属调整,并为制定农地整治权属调整的政策提供科学依据。基于改进计划行为理论和湖北省11个县(市、区)1044份农户抽样调查数据,采用多群组结构方程模型探究了农地整治权属调整中不同类型农户认知对其行为响应的作用机制。结果表明:农地整治权属调整中农户行为逻辑符合改进计划行为理论,农户的行为态度、主观规范、知觉行为控制交互影响行为意愿,进而转换为行为响应,政府支持在行为意愿和行为响应之间起到部分中介作用。总体上,农户行为响应是"自发性""诱发性"和"约束性"三重行动逻辑的结合,且"自发性"占主导地位。多群组结构方程估计结果表明,纯农型与兼业Ⅰ型农户的行为响应受到"自发性""诱发性"和"约束性"三重影响,兼业Ⅱ型农户受到"自发性"和"诱发性"双重影响,非农型农户仅受到"诱发性"单一影响。因此,为引导农户积极参与农地整治权属调整,应该分别针对各类农户相应地提高其参与的"自发性"和"诱发性",降低"约束性",充分发挥农村社会经济组织的作用,将四种不同类型农户的利益需求统筹考虑,降低权属调整过程中利益协调难度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号